已知雙曲線方程為,橢圓C以該雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn).
(1)當(dāng)a=,b=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l:與y軸交于點(diǎn)P,與橢圓交與A,B兩點(diǎn),若O為坐標(biāo)原點(diǎn),△AOP與△BOP面積之比為2∶1,求直線l的方程;
(3)若a=1,橢圓C與直線:y=x+5有公共點(diǎn),求該橢圓的長(zhǎng)軸長(zhǎng)的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
9y2 |
8 |
|
2 |
3 |
x2 |
a2 |
y2 |
b2 |
2 |
3 |
r1 |
r2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
y2 |
2 |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的
左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢
圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)
分別 為和
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市浦東新區(qū)高三4月高考預(yù)測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(1)設(shè)橢圓:與雙曲線:有相同的焦點(diǎn),是橢圓與雙曲線的公共點(diǎn),且的周長(zhǎng)為,求橢圓的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點(diǎn)到的距離為,到直線的距離為,求證:為定值;
(3)由拋物線弧:()與第(1)小題橢圓弧:()所合成的封閉曲線為“盾圓”.設(shè)過點(diǎn)的直線與“盾圓”交于兩點(diǎn),,且(),試用表示;并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com