已知函數(shù),函數(shù)g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱,則g(-1)的值是( )
A.
B.-1
C.
D.-3
【答案】分析:先求出函數(shù)f(x)的反函數(shù)f-1(x),在函數(shù)f-1(x)的解析式中見x換為x+1,從而得到y(tǒng)=f-1(x+1),然后再求該函數(shù)的反函數(shù)得到函數(shù)g(x),則g(-1)的值可求.
解答:解:由,得:yx-y=2x+3,所以,,
所以函數(shù)的反函數(shù)為,

又函數(shù)g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱,
所以函數(shù)g(x)是函數(shù)的反函數(shù),
得:yx-y=x+4,所以,
所以

故選C.
點(diǎn)評(píng):本題考查了函數(shù)反函數(shù)的求法,考查了函數(shù)值的求法,解答此題的關(guān)鍵是讀懂題意,在求y=f-1(x+1)時(shí)學(xué)生容易出錯(cuò),y=f-1(x+1)是在函數(shù)f(x)的反函數(shù)中把x換為x+1,而不是求f(x+1)的反函數(shù),此題屬中檔題,也是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(Ⅰ)若a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數(shù)的一個(gè)極值點(diǎn),求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=2時(shí),函數(shù)g(x)=-x2-b,(b>0),若對(duì)任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請(qǐng)求對(duì)應(yīng)的k的值;如果不是,請(qǐng)說(shuō)明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函數(shù)的一個(gè)極值點(diǎn),求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=2時(shí),函數(shù)g(x)=-x2-b,(b>0),若對(duì)任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年浙江省杭州十四中高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a為常數(shù)),若函數(shù)f(x)的最大值為
(1)求實(shí)數(shù)a的值;
(2)將函數(shù)y=f(x)的圖象向左平移個(gè)單位,再向下平移2個(gè)單位得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案