提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況。在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù)。當(dāng)橋上的的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明;當(dāng)時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀點(diǎn)的車輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).

(Ⅰ)函數(shù)的表達(dá)式為=;(Ⅱ)當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值約為3333輛/小時(shí).

解析試題分析:(1)由車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),可得時(shí),;又時(shí),車流速度是車流密度的一次函數(shù),設(shè),利用時(shí)時(shí)可求出,據(jù)此可求表達(dá)式.(2)是關(guān)于的分段函數(shù),求出每段的最大值,再比較可得的最大值.
試題解析:(Ⅰ)由題意:當(dāng)時(shí),;當(dāng)時(shí),設(shè)
,顯然是減函數(shù),由已知得,解得
故函數(shù)的表達(dá)式為=
(Ⅱ)依題意并由(Ⅰ)可得
當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),其最大值為;
當(dāng)時(shí),,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.
所以,當(dāng)時(shí),在區(qū)間上取得最大值
綜上,當(dāng)時(shí),在區(qū)間上取得最大值,
即當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值約為3333輛/小時(shí).
考點(diǎn):1.函數(shù)的實(shí)際應(yīng)用;2.函數(shù)的最值求法;3.均值不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

經(jīng)市場(chǎng)調(diào)查,某種商品在過去50天的銷售量和價(jià)格均為銷售時(shí)間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價(jià)格為g(t)=t+30(1≤t≤30,t∈N),后20天價(jià)格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系;
(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(I)解不等式;
(II)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過40輛/千米時(shí),車流速度為80千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位: 輛/小時(shí))f ,可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖是某重點(diǎn)中學(xué)學(xué)校運(yùn)動(dòng)場(chǎng)平面圖,運(yùn)動(dòng)場(chǎng)總面積15000平方米,運(yùn)動(dòng)場(chǎng)是由一個(gè)矩形和分別以、為直徑的兩個(gè)半圓組成,塑膠跑道寬8米,已知塑膠跑道每平方米造價(jià)為150元,其它部分造價(jià)每平方米80元,

(Ⅰ)設(shè)半圓的半徑(米),寫出塑膠跑道面積的函數(shù)關(guān)系式
(Ⅱ)由于受運(yùn)動(dòng)場(chǎng)兩側(cè)看臺(tái)限制,的范圍為,問當(dāng)為何值時(shí),運(yùn)動(dòng)場(chǎng)造價(jià)最低(第2問取3近似計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知冪函數(shù)(m∈N)的圖象關(guān)于y軸對(duì)稱,且在(0,+∞)上是減函數(shù),求滿足的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算:
(1);
(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案