已知函數(shù).
(1)若當時,函數(shù)的最大值為,求的值;
(2)設(shè)為函數(shù)的導(dǎo)函數(shù)),若函數(shù)上是單調(diào)函數(shù),求的取值范圍.
(1);(2).

試題分析:(1)求出導(dǎo)數(shù)方程的根,并以是否在區(qū)間內(nèi)進行分類討論,確定函數(shù)單調(diào)性,從而確定函數(shù)在區(qū)間上的最大值,從而求出實數(shù)的值;(2)解法一是分兩種情況討論,一種是函數(shù)是增函數(shù),二是函數(shù)是減函數(shù),從而得到上恒成立,最終轉(zhuǎn)化為來處理,從而求出實數(shù)的取值范圍;解法二是分兩種情況討論,一種是函數(shù)是增函數(shù),二是函數(shù)是減函數(shù),從而得到上恒成立,利用,對二次函數(shù)的首項系數(shù)與的符號進行分類討論,從而求出實數(shù)的取值范圍.
(1)由
可得函數(shù)上單調(diào)遞增,在上單調(diào)遞減,
時,取最大值,
①當,即時,函數(shù)上單調(diào)遞減,
,解得;
②當,即時,,
解得,與矛盾,不合舍去;
③當,即時,函數(shù)上單調(diào)遞增,
,解得,與矛盾,不合舍去;
綜上得
(2)解法一:,

顯然,對于不可能恒成立,
函數(shù)上不是單調(diào)遞增函數(shù),
若函數(shù)上是單調(diào)遞減函數(shù),則對于恒成立,
,解得,
綜上得若函數(shù)上是單調(diào)函數(shù),則;
解法二:,
,
,(
方程()的根判別式,
,即時,在上恒有,
即當時,函數(shù)上是單調(diào)遞減;
,即時,方程()有兩個不相等的實數(shù)根:
,
,
時,,當時,
即函數(shù)單調(diào)遞增,在上單調(diào)遞減,
函數(shù)上不單調(diào),
綜上得若函數(shù)上是單調(diào)函數(shù),則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)當時,求函數(shù)在區(qū)間內(nèi)的最大值;
(2)當時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是直線l上不同的三點,O是l外一點,向量滿足:記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數(shù)a的取值范圍:
(3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在區(qū)間上的連續(xù)函數(shù)的導(dǎo)函數(shù)為,如果使得,則稱為區(qū)間上的“中值點”.下列函數(shù):①;②;③;④在區(qū)間上“中值點”多于一個的函數(shù)序號為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求、的值;(2)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)在區(qū)間內(nèi)單調(diào),則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù))是定義在(一,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且有,則不等式的解集為-------------

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值;
(2)若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),).
(Ⅰ)當時,求曲線在點處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案