解:(1)函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),則b=d=0,
∴f /(x)=3ax2+c,則
故f(x)=-x3+x;………………………………5分
(2)∵f /(x)=-3x2+1=-3(x+)(x-)
∴f(x)在(-∞,-),(,+∞)上是增函數(shù),在[-,]上是減函數(shù),
由f(x)=0解得x=±1,x=0,
如圖所示,
當-1<m<0時,f(x)max=f(-1)=0;
當0≤m<時,f(x)max=f(m)=-m3+m,
當m≥時,f(x)max=f()=.
故f(x)max=.………………10分
(3)g(x)=(-x),令y=2k-x,則x、y∈R+,且2k=x+y≥2,
又令t=xy,則0<t≤k2,
故函數(shù)F(x)=g(x)·g(2k-x)=(-x)(-y)=+xy-
。剑玿y-=+t
+2,t∈(0,k2]
當1-4k2≤0時,F(xiàn)(x)無最小值,不合
當1-4k2>0時,F(xiàn)(x)在(0,]上遞減,在[,+∞)上遞增,
且F(k2)=(-k)2,∴要F(k2)≥(-k)2恒成立,
必須
,
故實數(shù)k的取值范圍是(0,)].………………15分