在區(qū)間[0,5]內(nèi)隨機(jī)選一個數(shù),則它是不等式log2(x-1)<1的解的概率______.
由不等式log2(x-1)<1得
x-1>0
x-1<21

解之得,1<x<3
得符合題意的區(qū)間為(1,3)
而大前提:在區(qū)間[0,5]內(nèi)隨機(jī)選一個數(shù)
故所求概率等于:P=
3-1
5-0
=
2
5

故答案為:
2
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在圓心角為的扇形中,以圓心O為起點作射線OC則使得 都不小于的概率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

小明家的晚報在下午5:30~6:30之間的任何一個時間隨機(jī)地被送到,小明一家人在下午6:00~7:00之間的任何一個時間隨機(jī)地開始晚餐.試計算:事件“晚報在晚餐之前被送到”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩人相約在7:30到8:00之間相遇,早到者應(yīng)等遲到者10分鐘方可離去,如果兩人出發(fā)是各自獨立的,在7:30到8:00之間的任何時刻是等可能的,問兩人相遇的可能性有多大______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知集合A={x|-1≤x≤0},集合B={x|ax+b•2x-1<0,0≤a≤2,1≤b≤3}.
(1)若a,b∈N,求A∩B≠∅的概率;
(2)若a,b∈R,求A∩B=∅的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)設(shè)點A(p,q)在|p|≤3,|q|≤3范圍內(nèi)均勻分布,求一元二次方程x2-2px-q2+1=0有實根的概率.
(2)p是從0,1,2,3四個數(shù)中任取的一個數(shù),q是從0,1,2,三個數(shù)中任取的一個數(shù),求上述x2-2px-q2+1=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將一個大正方形平均分成9個小正方形,向大正方形區(qū)域隨機(jī)地投擲一個點(每次都能投中),投中最左側(cè)3個小正方形區(qū)域的事件記為A,投中最上面3個小正方形或正中間的1個小正方形區(qū)域的事件記為B,則P(A|B)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

假設(shè)小明家訂了一份報紙,送報人可能在早上6:30至7:30之間把報紙送到小明家,小明爸爸離開家去工作的時間在早上7:00至8:00之間,問小明的爸爸在離開家前能得到報紙的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間[-2,2]內(nèi)隨機(jī)取兩個數(shù)分別記為a,b,則使得a2+b2≤4的概率為______.

查看答案和解析>>

同步練習(xí)冊答案