將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(1)求事件“z-3i為實數(shù)”的概率;
(2)求事件“復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點(a,b)滿足(a-2)2+b2≤9”的概率.
分析:由題意可得(a,b)的所有結(jié)果共有36種,每種結(jié)果等可能出現(xiàn)
(1)若z-3i為實數(shù),則a+bi-3i=a+(b-3)i為實數(shù),b=3.依題意a可取1,2,3,4,5,6,從而可得符合條件的(a,b)的個數(shù),代入概率的計算公式可求
(2)復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點(a,b)滿足(a-2)2+b2≤9,考慮到b的值只能取1,2,3,分別代入b的值,可求對應(yīng)的a,找出所有符合條件的(a,b)的個數(shù),代入概率的計算公式可求
解答:解:(1)z-3i為實數(shù),即a+bi-3i=a+(b-3)i為實數(shù),
∴b=3.依題意a可取1,2,3,4,5,6,
故出現(xiàn)b=3的概率為p1=
6
36
=
1
6

即事件“z-3i為實數(shù)”的概率為
1
6

(2)由條件可知,b的值只能取1,2,3.
當(dāng)b=1時,(a-2)2≤8,即a可取1,2,3,4,
當(dāng)b=2時,(a-2)2≤5,即a可取1,2,3,4,
當(dāng)b=3時,(a-2)2≤0,即a可取2.
∴共有9種情況下可使事件發(fā)生,又a,b的取值情況共有36種,
所以事件“點(a,b)滿足(a-2)2+b2≤9”的概率為
p2=
4
36
+
4
36
+
1
36
=
1
4
點評:本題以古典概率的計算為載體,綜合考查了分步計數(shù)原理,復(fù)數(shù)的概念,不等式的知識,等可能事件的概率計算,但考查的都是基本概念、基本方法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(1)求事件“z-3i為實數(shù)”的概率;
(2)求事件“|z-2|≤3”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(Ⅰ)求事件“z-4i為實數(shù)”的概率;
(Ⅱ)求事件“|z-1|≤3”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為x,第二次出現(xiàn)的點數(shù)為y.則事件“x+y≤3”的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

同步練習(xí)冊答案