在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F的坐標(biāo)為(1,0).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)M、N是拋物線C的準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且它們的縱坐標(biāo)之積為-4,直線MO、NO與拋物線的交點(diǎn)分別為點(diǎn)A、B,求證:動(dòng)直線AB恒過一個(gè)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知、、是長(zhǎng)軸長(zhǎng)為的橢圓上的三點(diǎn),點(diǎn)是長(zhǎng)軸的一個(gè)端點(diǎn),過橢圓中心,且,.
(1)求橢圓的方程;
(2)在橢圓上是否存點(diǎn),使得?若存在,有幾個(gè)(不必求出點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說明理由;
(3)過橢圓上異于其頂點(diǎn)的任一點(diǎn),作圓的兩條線,切點(diǎn)分別為、,,若直線 在軸、軸上的截距分別為、,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:()的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過P作x軸的垂線,垂足為C,連結(jié)AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.
(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;
(3)對(duì)任意k>0,求證:PA⊥PB..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為,求拋物線與雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,短軸的一個(gè)端點(diǎn)為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦距為2,且過點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓C交于兩點(diǎn).
①當(dāng)直線的傾斜角為時(shí),求的長(zhǎng);
②求的內(nèi)切圓的面積的最大值,并求出當(dāng)的內(nèi)切圓的面積取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.
(1)求橢圓的方程;
(2)是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記的斜率分別為.問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓+y2=1的左頂點(diǎn)為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1)當(dāng)直線AM的斜率為1時(shí),求點(diǎn)M的坐標(biāo);
(2)當(dāng)直線AM的斜率變化時(shí),直線MN是否過x軸上的一定點(diǎn)?若過定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com