【題目】設(shè)數(shù)列{an}各項為正數(shù),且a2=4a1 , an+1= +2an(n∈N*)
(I)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)令bn=log3(1+a2n﹣1),數(shù)列{bn}的前n項和為Tn , 求使Tn>345成立時n的最小值.
【答案】(I)證明:∵a2=4a1 , an+1= +2an(n∈N*),∴a2=4a1 , a2= ,解得a1=2,a2=8.
∴an+1+1= +2an+1= ,
兩邊取對數(shù)可得:log3(1+an+1)=2log3(1+an),
∴數(shù)列{log3(1+an)}為等比數(shù)列,首項為1,公比為2.
(II)解:由(I)可得:log3(1+an)=2n﹣1 ,
∴bn=log3(1+a2n﹣1)=22n﹣2=4n﹣1 ,
∴數(shù)列{bn}的前n項和為Tn= = .
不等式Tn>345,
化為 >345,即4n>1036.
解得n>5.
∴使Tn>345成立時n的最小值為6
【解析】(I)由a2=4a1 , an+1= +2an(n∈N*),可得a2=4a1 , a2= ,解得a1 , a2 . 由于an+1+1= +2an+1= ,兩邊取對數(shù)可得:log3(1+an+1)=2log3(1+an),即可證明.(II)由(I)可得:log3(1+an)=2n﹣1 , 可得bn=log3(1+a2n﹣1)=22n﹣2=4n﹣1 , 可得數(shù)列{bn}的前n項和為Tn , 代入化簡即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關(guān)知識可以得到問題的答案,需要掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個函數(shù)中,在定義域上不是單調(diào)函數(shù)的是( )
A.y=﹣2x+1
B.y=
C.y=lgx
D.y=x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)設(shè)bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項構(gòu)成等差數(shù)列?若存在,寫出這2m項,并證明這2m項構(gòu)成等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設(shè)cn=anbn , 求{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A1 , A2為橢圓 =1的長軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1 , A2的三點(diǎn),直線QA1 , QA2 , OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=( )
A.5
B.3+
C.9
D.14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關(guān)系,現(xiàn)在社會上隨機(jī)詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認(rèn)為:“性別與讀營養(yǎng)說明有關(guān)系”,并說明理由;
(2)把頻率當(dāng)概率,若從社會上的男性市民中隨機(jī)抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).
男性 | 女性 | 總計 | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計 | 60 | 40 | 100 |
參考公式和數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點(diǎn),且焦距為2 ,動弦AB平行于x軸,且|F1A|+|F1B|=4.
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上異于點(diǎn) 、A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2 , 求證:k1k2是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·江蘇)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的個數(shù)。
(1)寫出f(6)的值;
(2)當(dāng)n≥6時,寫出f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com