(2012•許昌二模)在長方體ABCD-A1B1C1D1中,AA1=AD=2AB,若E,F(xiàn)分別為線段A1D1,CC1的中點,則直線EF與平面ABB1A1所成角的余弦值為_
6
3
6
3
分析:取BB1中點為N,連接FN,取FN中點為M,連接A1M,A1F,易得∠MA1N為直線EF與平面ABB1A1所成角,解△MA1N即可求出直線EF與平面ABB1A1所成角的余弦值.
解答:解:取BB1中點為N,連接FN,取FN中點為M,
連接A1M,A1F 得EF∥A1M,EF=A1M,
∵A1F是EF在面A1ABB1上的投影.
∴∠MA1N為所求的角.令A(yù)B=1,
在△MA1N中,A1N=
2
,A1M=
3

∴cos∠MA1N=
6
3

故答案為:
6
3
點評:本題考查的知識點是直線與平面所成的角,其中構(gòu)造出線面夾角的平面角是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
+
2
2
t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的圓心到直線l的距離;
(Ⅱ)設(shè)圓C與直線l交于點A、B.若點P的坐標(biāo)為(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)設(shè)F為拋物線C:y2=2px(p>0)的焦點,過F且與拋物線C對稱軸垂直的直線被拋物線C截得線段長為4.
(1)求拋物線C方程.
(2)設(shè)A、B為拋物線C上異于原點的兩點且滿足FA⊥FB,延長AF、BF分別拋物線C于點C、D.求:四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)設(shè)a≥0,函數(shù)f(x)=[x2+(a-3)x-2a+3]ex,g(x)=2-a-x-
4x+1

( I)當(dāng)a≥1時,求f(x)的最小值;
( II)假設(shè)存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)若橢圓
x2
m
+
y2
8
=1
的焦距是2,則m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(Ⅰ)求證AF∥平面BCE;
(Ⅱ)設(shè)AB=1,求多面體ABCDE的體積.

查看答案和解析>>

同步練習(xí)冊答案