函數(shù)f(x)=x-tanx (-
π
2
<x<
π
2
)
的零點(diǎn)個(gè)數(shù)為
 
分析:把求零點(diǎn)問(wèn)題轉(zhuǎn)化為求函數(shù)圖象與x軸的交點(diǎn)的橫坐標(biāo)問(wèn)題,利用導(dǎo)函數(shù)求出函數(shù)的單調(diào)性來(lái)判斷交點(diǎn)個(gè)數(shù)即可.
解答:解:因?yàn)楹瘮?shù)f(x)=x-tanx (-
π
2
<x<
π
2
)
的零點(diǎn)就是函數(shù)圖象與x軸的交點(diǎn)的橫坐標(biāo).
又y'=1-
1
cos 2x
=
cos 2x-1
cos 2x
,當(dāng)x=0時(shí),y'=0,且y=0.
當(dāng)-
π
2
<x<0時(shí),y'<0,所以原函數(shù)遞減
當(dāng)0<x<
π
2
時(shí),y'<0,原函數(shù)遞減
故函數(shù)f(x)=x-tanx (-
π
2
<x<
π
2
)
是減函數(shù).又因?yàn)楫?dāng)x=0時(shí)y=0.所以函數(shù)只有一個(gè)零點(diǎn) 0.
故答案為:1.
點(diǎn)評(píng):本題主要考查利用函數(shù)的單調(diào)性來(lái)求函數(shù)與x軸的交點(diǎn)的個(gè)數(shù)問(wèn)題.當(dāng)一個(gè)函數(shù)為單調(diào)函數(shù)時(shí),它與x軸的交點(diǎn)最多一個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013

下列說(shuō)法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿(mǎn)足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿(mǎn)足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

下列說(shuō)法正確的是

[  ]

A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿(mǎn)足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿(mǎn)足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿(mǎn)足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π,x∈R)的導(dǎo)函數(shù)f′(x)的圖象上的一個(gè)最高點(diǎn)和與它相鄰的一個(gè)最低點(diǎn)的坐標(biāo)分別為M(-數(shù)學(xué)公式,3),N(數(shù)學(xué)公式,-3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移數(shù)學(xué)公式個(gè)單位得到函數(shù)g(x)圖象,直線(xiàn)x=t(t∈[0,數(shù)學(xué)公式])與f(x),g(x)的圖象分別交于P,Q兩點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山東省威海市高考模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π,x∈R)的導(dǎo)函數(shù)f′(x)的圖象上的一個(gè)最高點(diǎn)和與它相鄰的一個(gè)最低點(diǎn)的坐標(biāo)分別為M(-,3),N(,-3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移個(gè)單位得到函數(shù)g(x)圖象,直線(xiàn)x=t(t∈[0,])與f(x),g(x)的圖象分別交于P,Q兩點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山東省威海市高考模擬數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π,x∈R)的導(dǎo)函數(shù)f′(x)的圖象上的一個(gè)最高點(diǎn)和與它相鄰的一個(gè)最低點(diǎn)的坐標(biāo)分別為M(-,3),N(,-3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移個(gè)單位得到函數(shù)g(x)圖象,直線(xiàn)x=t(t∈[0,])與f(x),g(x)的圖象分別交于P,Q兩點(diǎn),求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案