過點(diǎn)(-1,2)且以直線2x+3y-7=0的法向量為其方向向量的直線的截距式方程是
 
考點(diǎn):直線的方向向量
專題:平面向量及應(yīng)用
分析:由題意易得直線的斜率,可得點(diǎn)斜式方程,化為截距式即可.
解答:解:∵直線2x+3y-7=0的斜率為-
2
3

∴所求直線的斜率為
3
2
,
∴所求直線的方程為y-2=
3
2
(x+1),
化為截距式可得
x
-
7
3
+
y
7
2
=1

故答案為:
x
-
7
3
+
y
7
2
=1
點(diǎn)評(píng):本題考查直線的法向量,涉及直線的截距式方程,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R函數(shù)y=f(x),存在常數(shù)a>0,對(duì)任意x∈R,均有f(x)<f(x+a)成立,則下列結(jié)論中正確的個(gè)數(shù)是( 。
(1)f(x)在R一定單調(diào)遞增;
(2)f(x)在R上不一定單調(diào)遞增,但滿足上述條件的所有f(x)一定存在遞增區(qū)間;
(3)存在滿足上述條件的f(x),但找不到遞增區(qū)間;
(4)存在滿足上述條件的f(x),既有遞增區(qū)間又有遞減區(qū)間.
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a 
2
3
=
4
9
(a>0),則log 
2
3
a的值等于( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ為銳角,且sin(θ-
π
4
)=
2
10
,則tan2θ=(  )
A、
4
3
B、
3
4
C、-
24
7
D、
24
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=2-
1
3
,b=log2
1
3
,c=log 
1
2
1
3
,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,5,-7),B(-2,4,3),求向量
AB
,向量
BA
,線段AB的中點(diǎn)坐標(biāo)及線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=lg(x-1)},B={y|y2-2y-3≤0},則A∩B=( 。
A、{x|1<x<3}
B、{y|1≤y≤3}
C、{x|1<x≤3}
D、{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班級(jí)有80名學(xué)生,現(xiàn)考慮用系統(tǒng)抽樣的方法抽取若干人參加某項(xiàng)調(diào)查,先將學(xué)生統(tǒng)一隨機(jī)編號(hào)為1,2,…,80.已知抽取的學(xué)生中最小的兩個(gè)編號(hào)為6,14,則抽取的學(xué)生中最大的編號(hào)為(  )
A、70B、72C、78D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a2
x
(其中常數(shù)a>0),x∈(0,+∞).對(duì)于n=1,2,3,…,定義函數(shù)列{fn(x)}如下:f1(x)=f(x),fn+1(x)=f(fn(x)).設(shè)y=fn(x)的圖象的最低點(diǎn)為Pn(xn,yn),則下列說法中錯(cuò)誤的是( 。
A、xn=a
B、yn+1>yn
C、fn+1(x)-fn(x)≥yn+1-yn
D、yn≥a
2n+2

查看答案和解析>>

同步練習(xí)冊(cè)答案