【題目】已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式;
(2)令bn=an3n(x∈R).求數(shù)列{bn}前n項和的公式.

【答案】
(1)解:設數(shù)列{an}公差為d,則 a1+a2+a3=3a1+3d=12,

又a1=2,d=2.所以an=2n.


(2)解:由bn=an3n=2n3n,得

Sn=23+432+…(2n﹣2)3n1+2n3n,①

3Sn=232+433+…+(2n﹣2)3n+2n3n+1.②

將①式減去②式,得

﹣2Sn=2(3+32+…+3n)﹣2n3n+1=﹣3(3n﹣1)﹣2n3n+1

所以


【解析】(1)利用等差數(shù)列的通項公式將已知等式用公差表示,列出方程求出公差,利用等差數(shù)列的通項公式求出通項.(2)由于數(shù)列的通項是一個等差數(shù)列與一個等比數(shù)列的乘積,利用錯位相減法求前n項和.
【考點精析】本題主要考查了等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關知識點,需要掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).有甲、乙兩人獨立來該租車點騎游(各組一車一次).設甲、乙不超過兩小時還車的概率分別為 ;兩小時以上且不超過三小時還車的概率分別為 ;兩人租車時間都不會超過四小時.

(1)求甲、乙兩人所付租車費用相同的概率;

(2)設甲、乙兩人所付的租車費用之和為隨機變量,求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,兩焦點分別為,右頂點為 .

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設過定點的直線與雙曲線的左支有兩個交點,與橢圓交于兩點,與圓交于兩點,若的面積為, ,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解下列不等式:
(1)2x2+x﹣1<0
(2)<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, 是兩條不同直線, , 是兩個不同平面,則下列命題正確的是( )

A. , 垂直于同一平面,則平行

B. , 平行于同一平面,則平行

C. 不平行,則在內(nèi)不存在與平行的直線

D. , 不平行,則不可能垂直于同一平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,設

(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;

(2)在中,分別為內(nèi)角的對邊,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù), 的圖象在點處的切線與直線平行.

(1)求的值;

(2)若函數(shù)),且在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分8分) 已知拋物線Cy=-x2+4x-3

1)求拋物線C在點A0,-3)和點B3,0)處的切線的交點坐標;

2)求拋物線C與它在點A和點B處的切線所圍成的圖形的面積.

查看答案和解析>>

同步練習冊答案