已知函數(shù)y=loga(1-ax)  (a>0且a≠1)
(1)求函數(shù)的定義域和值域;
(2)證明函數(shù)的圖象關(guān)于直線y=x對稱.
分析:(1)要使函數(shù)y=loga(1-ax)有意義,則1-ax>0,即ax<1.當(dāng)0<a<1和當(dāng)a>1兩種情況,分別求得x、y的范圍,即可得到函數(shù)的定義域和值域.
(2)先求得原函數(shù)的反函數(shù)為y=loga(1-ax),與原函數(shù)相同,即可證得函數(shù)的圖象關(guān)于直線y=x對.
解答:解:(1)要使函數(shù)y=loga(1-ax)有意義,則1-ax>0,即ax<1.
∴當(dāng)0<a<1時(shí),求得x>0,此時(shí),0<1-ax<1,∴y=loga(1-ax)>0,故函數(shù)的定義域?yàn)椋?,+∞),值域?yàn)椋?,+∞).
當(dāng)a>1時(shí),求得x<0,此時(shí),0<1-ax<1,∴y=loga(1-ax)<0,故函數(shù)的定義域?yàn)椋?∞,0),值域?yàn)椋?∞,0).
(2)由y=loga(1-ax)可得1-ax=ay,解得 x=loga(1-ay),故原函數(shù)的反函數(shù)為y=loga(1-ax)與原函數(shù)相同,
所以函數(shù)的圖象關(guān)于直線y=x對稱.
點(diǎn)評:本題主要考查對數(shù)函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,函數(shù)與反函數(shù)圖象間的關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、已知函數(shù)y=loga(x+b)的圖象如圖所示,則a、b的取值范圍分別是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x+4)-1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+3=0上,其中m>0,n>0,則
1
m
+
3
n
的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(3a-1)的值恒為正數(shù),則a的取值范圍是
1
3
2
3
)∪(1,+∞)
1
3
,
2
3
)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案