設△ABC的BC邊上的高AD=BC,a,b,c分別表示角A,B,C對應的三邊,則
b
c
+
c
b
的取值范圍是______.
∵BC邊上的高AD=BC=a,
∴S△ABC=
1
2
a2
=
1
2
bcsinA
,
∴sinA=
a2
bc
,又cosA=
b2+c2-a2
2bc
=
1
2
(
b
c
+
c
b
-
a2
bc
)
,
b
c
+
c
b
=2cosA+sinA=
5
2
5
5
cosA+
5
5
sinA)=
5
sin(α+A)≤
5
,
(其中sinα=
2
5
5
,cosα=
5
5
)又
b
c
+
c
b
≥2,
b
c
+
c
b
∈[2,
5
].
故答案為:[2,
5
]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設△ABC的BC邊上的高AD=BC,a,b,c分別表示角A,B,C對應的三邊,則
b
c
+
c
b
的取值范圍是
[2,
5
]
[2,
5
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的BC邊上的高AD=BC,a,b,c分別是內(nèi)角A,B,C的對邊.
(1)求
b
c
+
c
b
的最小值及取得最小值時cosA的值;
(2)把
b
c
+
c
b
表示為xsinA+ycosA的形式,判斷
b
c
+
c
b
能否等于
5
?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省高三預測卷3數(shù)學 題型:填空題

設△ABC的BC邊上的高AD=BC,a,b,c分別表示角A,B,C對應的三邊,則的取值范圍是        .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省南京市金陵中學高考數(shù)學預測試卷(3)(解析版) 題型:解答題

設△ABC的BC邊上的高AD=BC,a,b,c分別表示角A,B,C對應的三邊,則+的取值范圍是   

查看答案和解析>>

同步練習冊答案