且兩兩互相垂直的直線分別交橢圓。(13分)

(1)求的最值

(2)求證:為定值

 

【答案】

(1)設直線的傾斜角為,則的參數(shù)方程為為參數(shù))

代入橢圓的方程中,整理得:

所以所以

的最大值為8,最小值為2。

(2)證明:因為,不妨設的傾斜角小于的傾斜角,則的傾斜角為

因此直線的參數(shù)方程為為參數(shù))

代入橢圓的方程中

整理得,所以

所以即得證

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋物線y=g(x)經(jīng)過點O(0,0)、A(m,0)與點P(m+1,m+1),其中m>n>0,b<a,設函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值.
(1)用m,x表示f(x)=0.
(2)比較a,b,m,n的大小(要求按從小到大排列).
(3)若m+n≤2
2
,且過原點存在兩條互相垂直的直線與曲線y=(x)均相切,求y=f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C焦點在x軸上,其長軸長為4,離心率為
3
2

(1)設過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍;
(2)如圖,過原點O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)相交于P,S,R,Q四點,設原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,且過點A(0,1).
(1)求橢圓的方程;
(2)過點A作兩條互相垂直的直線分別交橢圓于M,N兩點.求證:直線MN恒過定點P(0,-
3
5
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點為F1,F(xiàn)2,且離心率為
3
2

(1)若過F1的直線交橢圓E于P,Q兩點,且
PF1
=3
F1Q
,求直線PQ的斜率;
(2)若橢圓E過點(0,1),且過F1作兩條互相垂直的直線,它們分別交橢圓E于A,C和B,D,求四邊形ABCD面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•廣州二模)長度為a(a>0)的線段AB的兩個端點A、B分別在x軸和y軸上滑動,點P在線段AB上,且
AP
PB
(λ為常數(shù)且λ>0).
(Ⅰ)求點P的軌跡方程C;
(Ⅱ)當a=λ+1時,過點M(1,0)作兩條互相垂直的直線l1和l2,l1和l2分別與曲線C相交于點N和Q(都異于點M),試問:△MNQ能不能是等腰三角形?若能,這樣的三角形有幾個;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案