【題目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函數(shù)f(x)的值域;
(2)設△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若f()=1,b=1,c= , 求a的值.
【答案】解:(1)f(x)==2﹣sin(2x+)﹣2sin2x=2﹣(sin2xcos+cos2xsin)﹣(1﹣cos2x)=cos2x﹣sin2x+1=cos(2x+)+1.
∵x∈[0,],∴2x+∈[,],∴﹣1≤cos(2x+)≤,從而有0≤f(x)≤,
所以函數(shù)f(x)的值域為[0,].
(2)由f()=1,得cos(B+)=0,又因為0<B<π,所以<B+,
從而B+=,即B=.
因為b=1,c=,所以由正弦定理得sinC==,
故C=或,
當C=時,A=,從而a==2,
當C=時,A=,又B=,從而a=b=1
綜上a的值為1或2
【解析】(1)利用平面向量數(shù)量積的運算及三角函數(shù)恒等變換的應用化簡可得解析式f(x)=cos(2x+)+1,由余弦函數(shù)的有界性即可求值域.
(2)由f()=1,得cos(B+)=0,又結(jié)合范圍0<B<π,即可解得B的值,由正弦定理可求sinC,解得C,解得A,即可解得a的值.
【考點精析】掌握兩角和與差的正弦公式和正弦定理的定義是解答本題的根本,需要知道兩角和與差的正弦公式:;正弦定理:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+a(x+lnx),a∈R. (Ⅰ)若當a=﹣1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)> (e+1)a,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為(,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )
A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名
C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(UA)∩B=( 。
A.?
B.{x|<x≤1}
C.{x|x<1}
D.{x|0<x<1}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點及圓.
(1)若直線過點且與圓心的距離為1,求直線的方程;
(2)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;
(3)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn , 且a2=8,S4=40.數(shù)列{bn}的前n項和為Tn , 且Tn﹣2bn+3=0,n∈N* .
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設cn= , 求數(shù)列{cn}的前n項和Pn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設Sn為數(shù)列{an}的前n項和,滿足Sn=2an-2 (n∈N*)
(1)求的值,并由此猜想數(shù)列{an}的通項公式an;
(2)用數(shù)學歸納法證明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< )的圖象關(guān)于直線x= 對稱,且圖象上相鄰兩個最高點的距離為π.
(1)求ω和φ的值;
(2)若f( )= ( <α< ),求cos(α+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓C: (a>b>0),動直線l與橢圓C只有一個公共點P,且點P在第一象限.
(1)已知直線l的斜率為k,用a,b,k表示點P的坐標;
(2)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a﹣b.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com