不等式9x+2·3x+1-24>0的解集是________.

答案:
解析:

  x>log32.

  設(shè)3x=t,t2+6t-16>0,t>2或t<-8,∴x>log32


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是實(shí)數(shù),f(x)=a-
22x+1
(x∈R)

(1)若函數(shù)f(x)為奇函數(shù),求a的值;
(2)試證明:對于任意a,f(x)在R上為單調(diào)函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),且不等式f(k•3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足f(xy)=f(x)+f(y),且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1);
(2)證明f(x)在(0,+∞)上單調(diào)遞減;
(3)若關(guān)于x的不等式f(k•3x)-f(9x-3x+1)≥f(1)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式9x>3x-2的解集為
(-2,+∞)
(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)解不等式9x-10•3x+9≤0;
(2)在(1)的條件下求函數(shù)f(x)=(
1
4
)x-1-4(
1
2
)x+2
的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案