(2013•渭南二模)設(shè)實(shí)數(shù)x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,則點(diǎn)(x,y)在圓面x2+y2
1
2
內(nèi)部的概率( 。
分析:畫出實(shí)數(shù)x,y滿足
-1≤x+y≤1
-1≤x-y≤1
對應(yīng)的平面區(qū)域,和任取其中x,y,使x2+y2
1
2
對應(yīng)的平面區(qū)域,分別求出其面積大小,代入幾何概型概率公式,即可得到答案.
解答:解:在平面坐標(biāo)系中滿足
-1≤x+y≤1
-1≤x-y≤1
的(x,y)點(diǎn)如下圖中正方形面積所示:
滿足條件x2+y2
1
2
的(x,y)點(diǎn)如圖中陰影部分所示:
∵S正方形=2,S陰影=
1
2
π
故任取其中x,y,使x2+y2
1
2
的概率P=
S 陰影
S矩形
=
1
2
π
2
=
π
4

故選B.
點(diǎn)評:本題考查的知識(shí)點(diǎn)是幾何概型,其中分別計(jì)算出基本事件總數(shù)和滿足條件的基本事件對應(yīng)的平面區(qū)域的面積是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)某幾何體的主視圖與俯視圖如圖所示,左視圖與主視圖相同,且圖中的四邊形都是邊長為2的正方形,兩條虛線互相垂直,則該幾何體的體積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)若函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=
1gx(x>0)
-
1
x
(x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)在等差數(shù)列{an}中,a2+a7=-23,a3+a8=-29.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為c的等比數(shù)列,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數(shù))相交于兩點(diǎn)A和B,則|AB|=
14
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)設(shè)x∈R,i是虛數(shù)單位,則“x=-3”是“復(fù)數(shù)z=(x2+2x-3)+(x-1)i為純數(shù)”的(  )

查看答案和解析>>

同步練習(xí)冊答案