a=20.3,b=0.32,c=log25,則a,b,c的大小關系為(  )
A、c<b<a
B、b<c<a
C、b<a<c
D、a<b<c
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應用
分析:利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵1<a=20.3<2,b=0.32<1,c=log25>log24=2,
∴b<a<c.
故選:C.
點評:本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為[1,2],值域為[3,4],若關于x的不等式f(x)≥a在[1,2]上有解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
ax+b
的圖象與它的反函數(shù)的圖象有一個交點M(1,2),則兩個函數(shù)交點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|2<x<8},B={x|x≥6},求A∩B,A∪B,(∁uA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),若對于x≥0,都有f(x+2)=f(x),且當x∈[0,2)時,f(x)=log2(x+1),則f(-2015)+f(2014)的值為(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于平面向量
a
、
b
、
c
,有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
④若
a
=(λ,-2),
b
=(-3,5),且
a
b
的夾角是鈍角,則λ的取值范圍是λ∈(-
10
3
,+∞)
其中正確命題的序號為
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點C(4,3),AC邊上的中線BM所在直線方程為2x-y-4=0,BC邊上的高AH所在直線方程為3x+5y-11=0,求頂點A,B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
3+i
-i
(i
為虛數(shù)單位)的虛部為( 。
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
=(2,0),
b
=(x,y)
,若
b
b
-
a
的夾角等于
π
6
,則|
b
|
的最大值為
 

查看答案和解析>>

同步練習冊答案