【題目】△ABC的角A、B、C的對(duì)邊分別為a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.
(Ⅰ)求角A的大小;
(Ⅱ)當(dāng)y=2sin2B+sin(2B+)取最大值時(shí),求角的大小.
【答案】(Ⅰ) A=.(Ⅱ) B=時(shí),y取最大值2.
【解析】
⊥.考查數(shù)量積的坐標(biāo)表示,
,求y=2sin2B+sin(2B+)取最大值時(shí),將函數(shù)解析式化為y=1+sin(2B-).
然后作用的角用整體法-<2B-<,在范圍內(nèi)求最值.
解: (Ⅰ)由⊥,得·=0,從而(2b-c)cosA-acosC=0,
由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0
∴2sinBcosA-sin(A+C)=0,2sinBcosA-sinB=0,
∵A、B∈(0,π),∴sinB≠0,cosA=,故A=
(Ⅱ)y=2sin2B+2sin(2B+)=(1-cos2B)+sin2Bcos+cos2Bsin
=1+sin2B-cos2B=1+sin(2B-).
由(Ⅰ)得,0<B<,-<2B-<,
∴當(dāng)2B-=,即B=時(shí),y取最大值2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①函數(shù)與的圖象關(guān)于軸對(duì)稱;
②若函數(shù),則,都有;
③若函數(shù),在上單調(diào)遞增,則;
④若函數(shù),則函數(shù)的最小值為.
其中真命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ(a≠0).
(1)求圓C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)直線l截圓C的弦長是半徑長的倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對(duì)稱;。不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯(cuò)誤的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若方程有兩個(gè)實(shí)數(shù)根,,且,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),且的極小值為.
(Ⅰ)求和的值;
(Ⅱ)若過點(diǎn)可作三條不同的直線與曲線相切,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計(jì)入考生總成績時(shí),將A至E等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.
某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績?cè)趨^(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知:a5=2a2+3且a2,,a14成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)正項(xiàng)數(shù)列{bn}滿足bn2Sn+1=Sn+1+2,求證:b1+b2+…+bn<n+1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com