已知函數(shù)f(x)滿足:?x∈R,f(x+2)=f(x-2),且當(dāng)x∈[0,4)時(shí),f(x)=x2,則f(2014)=
 
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)的周期性
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由于f(x+2)=f(x-2),將x換為x+2,則得f(x)是周期為4的函數(shù),故f(2014)=f(2),由條件x∈[0,4)時(shí),f(x)=x2,即可得答案.
解答: 解:∵?x∈R,f(x+2)=f(x-2),
∴f(x+4)=f(x),即f(x)是最小正周期為4的函數(shù),
∴f(2014)=f(4×503+2)=f(2),
∵x∈[0,4)時(shí),f(x)=x2
∴f(2)=22=4,
∴f(2014)=4.
故答案為:4.
點(diǎn)評(píng):本題主要考查函數(shù)的周期性及應(yīng)用,考查解決抽象函數(shù)的常用方法:賦值法,注意正確賦式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)k為何值時(shí),直線3x-(k+2)y+k+5=0與直線kx+(2k-3)y+2=0:
(1)相交;
(2)垂直;
(3)平行;
(4)重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

受日月引力影響,海水會(huì)發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時(shí)駛進(jìn)港口,退潮時(shí)離開港口.某港口在某季節(jié)每天港口水位的深度y(米)是時(shí)間t(0≤t≤24,單位:小時(shí),t=0表示0:00-零時(shí))的函數(shù),其函數(shù)關(guān)系式為y=f(t),f(t)=Asin(ωt+φ)+K(A>0,ω>0,|φ|<
π
2
).已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時(shí)間差為12小時(shí),最高水位的深度為12米,最低水位的深度為6米,每天13:00時(shí)港口水位的深度恰為10.5米.
(Ⅰ)試求函數(shù)y=f(t)的表達(dá)式;
(Ⅱ)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時(shí)船底與海底的距離不小于3.5米是安全的,問該船在當(dāng)天的什么時(shí)間段能夠安全進(jìn)港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點(diǎn)以前離開港口?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知A(5,-2)、B(7,3),且AC邊的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上,求這個(gè)三角形三邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n2-15n+6,則該數(shù)列最小項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(
1
2
x,且f(2x+1)=2f(2x),則滿足條件的實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若cos(A-B)=2cosAcosB,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,∠BAD=30°,∠CAD=45°,AB=3,AC=2,則
BD
DC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},則“an+1>an-1”是“數(shù)列{an}為遞增數(shù)列”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案