【題目】求函數(shù)f(x)=xlnx的定義域及單調(diào)區(qū)間.
【答案】解:f(x)的定義域是:(0,+∞),
f′(x)=lnx+x =1+lnx,
令f′(x)>0,解得:x> ,
令f′(x)<0,解得:0<x< ,
故函數(shù)f(x)在(0, )遞減,在( ,+∞)
【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)求出f(x)的定義域即可;求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.
【考點精析】本題主要考查了函數(shù)的定義域及其求法和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓弧.
(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為x軸,G為坐標(biāo)原點,建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則( )
A.以上四個圖形都是正確的
B.只有(2)(4)是正確的
C.只有(4)是錯誤的
D.只有(1)(2)是正確的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與直線3x+4y-7=0垂直,且與原點的距離為6的直線方程;
(2)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點,且平行于直線x+2y-3=0的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C對邊分別為a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,則△ABC的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,求點到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )
A. B.
C. D. ,使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an},{bn}滿足a1=3,a2=6,{bn}是等差數(shù)列,且對任意正整數(shù)n,都有 成等比數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)設(shè) ,試比較2Sn與 的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com