【題目】在平面直角坐標(biāo)系中,為拋物線上不同的兩點,且,點且于點.
(1)求的值;
(2)過軸上一點 的直線交于,兩點,在的準(zhǔn)線上的射影分別為,為的焦點,若,求中點的軌跡方程.
【答案】(1);(2)
【解析】
(1)由點且于點,可求得直線AB的方程,聯(lián)立直線方程與拋物線方程由韋達定理可表示,進而表示,再由,得構(gòu)建方程,解得p值;
(2)分別表示與,由已知構(gòu)建方程,解得t的值,設(shè)的中點的坐標(biāo)為,當(dāng)與軸不垂直時,由構(gòu)建等式,整理得中點軌跡方程;當(dāng)與軸垂直時,與重合,綜上可得答案.
(1)由及,得直線的斜率,
則的方程為,即,
設(shè),,
聯(lián)立消去得,,
由韋達定理,得,于是,
由,得,即,則,
解得.
(2)由(1)得拋物線的焦點,設(shè)的準(zhǔn)線與軸的交點為,
則,,
由,得,且,得.
設(shè)的中點的坐標(biāo)為,
則當(dāng)與軸不垂直時,由,
可得,
;
當(dāng)與軸垂直時,與重合,
所以的中點的軌跡方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C:,過拋物線焦點F的直線交拋物線C于A,B兩點,P是拋物線外一點,連接,分別交拋物線于點C,D,且,設(shè),的中點分別為M,N.
(1)求證:軸;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=BC=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)證明:BC⊥平面ACFE;
(2)設(shè)點M在線段EF上運動,平面MAB與平面FCB所成銳二面角為θ,求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體和(是給定的正整數(shù),且),再從每個子總體中各隨機抽取2個元素組成樣本.用表示元素和同時出現(xiàn)在樣本中的概率.
(1)求的表達式(用,表示);
(2)求所有的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,c,________.(補充條件)
(1)求△ABC的面積;
(2)求sin(A+B).
從①b=4,②cosB,③sinA這三個條件中任選一個,補充在上面問題中并作答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時,求的極值;
(Ⅱ)當(dāng)時,若存在,使得恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com