【題目】如圖,已知點(diǎn)為拋物線的焦點(diǎn),過(guò)點(diǎn)的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線上,使得的重心軸上,直線軸于點(diǎn),且在點(diǎn)的右側(cè).、的面積分別.

1)求的值及拋物線的方程;

2)求的最小值及此時(shí)點(diǎn)的坐標(biāo).

【答案】1;(2

【解析】

1)由拋物線的焦點(diǎn)坐標(biāo),即可得的值及拋物線的方程;

2)引入變量表示點(diǎn)坐標(biāo),然后將直線的方程用表示,利用三角形的重心也可以把其余點(diǎn)的坐標(biāo)用變量表示,進(jìn)而將三角形面積的比值表示成關(guān)于的函數(shù),再利用基本不等式求最小值,從而得到答案.

1)由拋物線的性質(zhì)可得:,∴

∴拋物線的方程為;

2)設(shè),,,重心,

,,則,

由于直線過(guò),故直線的方程為

代入,得:,

,即,∴

,,重心在軸上,

,

,,

∴直線的方程為,得

在焦點(diǎn)的右側(cè),∴

,

,則

,

∴當(dāng)時(shí),取得最小值為,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿(mǎn)足

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過(guò)x軸上的定點(diǎn)?若過(guò)定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐,,,,為等邊三角形,平面平面,中點(diǎn).

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心O,點(diǎn)C在第一象限,且,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)P、Q為橢圓上不重合的兩點(diǎn)且異于A、B,若的平分線總是垂直于x軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)說(shuō)法,其中正確的是( )

A.命題“若,則”的否命題是“若,則

B.”是“雙曲線的離心率大于”的充要條件

C.命題“,”的否定是“

D.命題“在中,若,則是銳角三角形”的逆否命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班60人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

60

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為7.

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由;

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面,,.

(1)當(dāng)變化時(shí),點(diǎn)到平面的距離是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由;

(2)當(dāng)直線與平面所成的角為45°時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫(xiě)有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案