函數(shù)y=sin(2x+
π
4
)的一個(gè)單調(diào)增區(qū)間是(  )
分析:利用正弦函數(shù)的單調(diào)性即可求得答案.
解答:解:由2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈Z得:
kπ-
8
≤x≤kπ+
π
8
,k∈Z,
令k=-1,-
11π
8
≤x≤-
8

故函數(shù)y=sin(2x+
π
4
)的一個(gè)單調(diào)增區(qū)間是[-
11π
8
,-
8
].
故選A.
點(diǎn)評(píng):本題考查復(fù)合三角函數(shù)的單調(diào)性,著重考查正弦函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(-2x+
π4
),x∈[0,π]的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)一模)為得到函數(shù)y=sin(π-2x)的圖象,可以將函數(shù)y=sin(2x-
π
3
)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(2x+φ)(0≤φ≤π)是R上的偶函數(shù),則φ的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)x=t與函數(shù)y=sin(2x+
π
4
)和y=cos(2x+
π
4
)的圖象分別交于P,Q兩點(diǎn),則|PQ|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=
1
2
+
1
2x-1
(x≠0)
是奇函數(shù);
③函數(shù)y=sin(-2x)在區(qū)間[
π
4
,
4
]
上是減函數(shù);
④函數(shù)y=cos|x|是周期函數(shù);
⑤對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0.(其中“?”表示“存在”,“?”表示“任意”).
其中錯(cuò)誤結(jié)論的序號(hào)是
.(填寫(xiě)你認(rèn)為錯(cuò)誤的所有結(jié)論序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案