【題目】近些年學(xué)區(qū)房的出現(xiàn)折射出現(xiàn)行教育體制方面的弊端造成了教育資源的分配不均衡.為此某市出臺(tái)了政策:自2019年1月1日起,在該市新登記并取得房屋不動(dòng)產(chǎn)權(quán)證書的住房用于申請(qǐng)入學(xué)的將不再對(duì)應(yīng)一所學(xué)校,實(shí)施多校劃片.有關(guān)部門調(diào)查了該市某名校對(duì)應(yīng)學(xué)區(qū)內(nèi)建筑面積不同的戶型,得到了以下數(shù)據(jù):
(1)試建立房屋價(jià)格y關(guān)于房屋建筑面積的x的線性回歸方程;
(2)若某人計(jì)劃消費(fèi)不超過100萬元購(gòu)置學(xué)區(qū)房,根據(jù)你得到的回歸方程估計(jì)此人選房時(shí)建筑面積最大為多少?(保留到小數(shù)點(diǎn)后一位數(shù)字)
參考公式:,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是圓的直徑.若與圓外離的圓上存在點(diǎn),連接與圓交于點(diǎn),滿足,則半徑的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng),討論的零點(diǎn)個(gè)數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是兩個(gè)小區(qū)所在地,、到一條公路的垂直距離分別為,,兩端之間的距離為.
(1)某移動(dòng)公司將在之間找一點(diǎn),在處建造一個(gè)信號(hào)塔,使得對(duì)、的張角與對(duì)、的張角相等,試確定點(diǎn)的位置.
(2)環(huán)保部門將在之間找一點(diǎn),在處建造一個(gè)垃圾處理廠,使得對(duì)、所張角最大,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c,d∈R,矩陣A= 的逆矩陣A-1=.若曲線C在矩陣A對(duì)應(yīng)的變換作用下得到直線y=2x+1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,再把所得各點(diǎn)向右平移個(gè)單位長(zhǎng)度,最后把所得各點(diǎn)縱坐標(biāo)擴(kuò)大到原來的2倍,就得到函數(shù)f(x)的圖象,則下列說法中正確的個(gè)數(shù)是( )
①函數(shù)f(x)的最小正周期為2π;
②函數(shù)f(x)的最大值為2;
③函數(shù)f(x)圖象的對(duì)稱軸方程為;
④設(shè)x1,x2為方程的兩個(gè)不相等的根,則的最小值為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P—ABC中,PB平面ABC,ABBC,AB=PB=2,BC=2,E、G分別為PC、PA的中點(diǎn).
(1)求證:平面BCG平面PAC;
(2)假設(shè)在線段AC上存在一點(diǎn)N,使PNBE,求的值;
(3)在(2)的條件下,求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,為橢圓的右焦點(diǎn),為橢圓上一點(diǎn),的離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)斜率為的直線過點(diǎn)交橢圓于兩點(diǎn),線段的中垂線交軸于點(diǎn),試探究是否為定值,如果是,請(qǐng)求出該定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com