【題目】(1)已知點A(-1,-2),B(1,3),P為x軸上的一點,求|PA|+|PB|的最小值;

(2)已知點A(2,2),B(3,4),P為x軸上一點,求||PB|-|PA||的最大值.

【答案】(1);(2)

【解析】

(1)A、B在x軸的異側(cè),利用三點共線的原理可以確定|PA|+|PB|的最小值最小值.

(2))A、B在x軸的同側(cè),三角形兩邊之差小于第三邊即:|PB|-|PA||<|AB|,可得||PB|-|PA||的最大值.

(1)由題設(shè)知,點A在第三象限,點B在第一象限,連接PA,PB,則.

所以當(dāng)P為直線AB與x軸的交點時,|PA|+|PB|取得最小值為|AB|,

而|AB|=,故的最小值為.

(2)由題設(shè)知,A,B兩點同處x軸上方,對于x軸上任意一點P,

當(dāng)P,A,B不共線時,在中,||PB|-|PA||<|AB|,而|AB|=,

∴||PB|-|PA||<.

當(dāng)P為直線AB與x軸的交點,即P,A,B共線時,||PB|-|PA||=|AB|=,

∴||PB|-|PA||的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈(1,+∞),函數(shù)f(x)=ex+2ax(a∈R),函數(shù)g(x)=| ﹣lnx|+lnx,其中e為自然對數(shù)的底數(shù).
(1)若a=﹣ ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)a∈(2,+∞)時,f′(x﹣1)>g(x)+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長為的的菱形, ,四邊形是矩形,平面平面分別是的中點.

)求證:平面平面;

)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知R是實數(shù)集, ,則N∩RM=(
A.(1,2)
B.[0,2]
C.
D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B,C的對邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項.
(1)求∠B的大小;
(2)若a+c= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2|x﹣a|.
(1)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(2)若a= ,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)a>0時,若對任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=4,且對任意m,n,p,q∈N* , 若m+n=p+q,則有am+an=ap+aq . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{ }的前n項和為Sn , 求證: ≤Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x>1, x>0,命題q:x∈R,x3>3x , 則下列命題為真命題的是(
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

同步練習(xí)冊答案