【題目】判斷下列結(jié)論的正誤(正確的打“√”,錯(cuò)誤的打“×”).
()在增函數(shù)與減函數(shù)的定義中,可以把“任意兩個(gè)自變量”改為“存在兩個(gè)自變量”._____
()函數(shù)的單調(diào)遞減區(qū)間是._____
()所有的單調(diào)函數(shù)都有最值._______
()與表示同一個(gè)集合.______
()已知定義在上的函數(shù)的圖象是連續(xù)不斷的,當(dāng)時(shí),則方程至少有一個(gè)實(shí)數(shù)解._______
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
()當(dāng)時(shí),求在區(qū)間上的最大值和最小值.
()解關(guān)于的不等式.
()當(dāng)時(shí),若存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面, 為等邊三角形, 且, 分別為的中點(diǎn).
(1)求證: 平面.
(2)求證:平面平面.
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)= (e為自然對(duì)數(shù)底數(shù)),若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過, ,且圓心在直線上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線垂直且與圓相切的直線方程.
(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2kx﹣4,若對(duì)任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,則實(shí)數(shù)k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線及點(diǎn).
(1)證明直線過某定點(diǎn),并求該定點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)到直線的距離最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0),A1 , A2是實(shí)軸頂點(diǎn),F(xiàn)是右焦點(diǎn),B(0,b)是虛軸端點(diǎn),若在線段BF上(不含端點(diǎn))存在不同的兩點(diǎn)p1(i=1,2),使得△PiA1A2(i=1,2)構(gòu)成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是( )
A.( ,+∞)
B.( ,+∞)
C.(1, )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 的最小值為( )
A.
B.
C.
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com