已知函數(shù),,為自然對數(shù)的底數(shù).
(I)求函數(shù)的極值;
(2)若方程有兩個不同的實數(shù)根,試求實數(shù)的取值范圍;
(I)極大值,極小值;(2)。
解析試題分析:(I)利用導函數(shù)求解單調(diào)區(qū)間,根據(jù)單調(diào)區(qū)間求解極大極小值。先減后增,極小值;先增后減,極大值。(2)結合(I),并考慮與兩個方向圖像的變化,數(shù)形結合即可得解。
試題解析: 2分
令,解得或,列表如下 4分-4 0 + 0 - 0 + 遞增 極大 遞減 極小 遞增
由表可得當時,函數(shù)有極大值;
當時,函數(shù)有極小值; 8分
(2)由(1)及當,;,大致圖像為如下圖(大致即可)問題“方程有兩個不同的實數(shù)根”轉(zhuǎn)化為函數(shù)的圖像與的圖像有兩個不同的交點, 10分
故實數(shù)的取值范圍為. 13分
考點:1、利用函數(shù)導數(shù)判斷函數(shù)的單調(diào)性;2、數(shù)形結合法與函數(shù)單調(diào)性在求方程解中的綜合應用。
科目:高中數(shù)學 來源: 題型:解答題
設R,函數(shù).
(1)若x=2是函數(shù)y=f(x)的極值點,求實數(shù)a的值;
(2)若函數(shù)在區(qū)間[0,2]上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,對,恒成立,求實數(shù)的取值范圍;
(3)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是函數(shù)的一個極值點,其中.
(1)與的關系式;
(2)求的單調(diào)區(qū)間;
(3)當時,函數(shù)的圖象上任意一點處的切線的斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知, ,,其中e是無理數(shù)且e="2.71828" ,.
(1)若,求的單調(diào)區(qū)間與極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù)a,使的最小值是?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,( a為常數(shù),e為自然對數(shù)的底).
(1)
(2)時取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設的極大值構成的函數(shù),將a換元為x,試判斷是否能與(m為確定的常數(shù))相切,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1當 時, 與)在定義域上單調(diào)性相反,求的 的最小值。
(2)當時,求證:存在,使的三個不同的實數(shù)解,且對任意且都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中,為自然對數(shù)的底數(shù)。
(Ⅰ)設是函數(shù)的導函數(shù),求函數(shù)在區(qū)間上的最小值;
(Ⅱ)若,函數(shù)在區(qū)間內(nèi)有零點,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點,使得>成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com