若復(fù)數(shù)z滿足iz=2+4i,則在復(fù)平面內(nèi),z的共軛復(fù)數(shù)
.
z
對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A、(2,4)
B、(2,-4)
C、(4,-2)
D、(4,2)
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由題意可得z=
2+4i
i
,再利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則化為a+bi的形式,從而求得z對(duì)應(yīng)的點(diǎn)的坐標(biāo).
解答: 解:復(fù)數(shù)z滿足iz=2+4i,則有z=
2+4i
i
=
(2+4i)•i
i•i
=4-2i,
故在復(fù)平面內(nèi),
.
z
對(duì)應(yīng)的點(diǎn)的坐標(biāo)是(4,2),
故選:D.
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a4+a14=1,則此數(shù)列的前17項(xiàng)的和=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
n
+1)n展開式中x3項(xiàng)的系數(shù)是
1
16
,則正整數(shù)n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3位男生和3位女生共6位同學(xué)站成一排,若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)是
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a:b:c=3:3:5,
2sinA-sinB
sinC
的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在(0,
π
2
)上的函數(shù)y=2sinx的圖象分別與y=cosx,y=tanx的圖象交于點(diǎn)(x1,y1),(x2,y2),則
5
y1+y2=( 。
A、3+
2
B、2+
2
C、3+
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為k=1的直線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于A、B兩點(diǎn),若A、B的中點(diǎn)為M(1,3),則雙曲線的漸近線方程為( 。
A、x±
3
y=0
B、
3
x±y=0
C、x±2y=0
D、2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
(2+i)(1-i)2
1-2i
等于( 。
A、2B、-2C、2iD、-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),M為此雙曲線上的一點(diǎn),滿足|MF1|=3|MF2|,那么此雙曲線的離心率的取值范圍是( 。
A、(1,2)
B、(1,2]
C、(0,2)
D、[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案