設(shè)函數(shù)y=f(x)(x∈R,且x≠0),對任意非零實數(shù)x1、x2滿足f(x1+x2)=f(x1x2),
(1)求f(1)+f(-1)的值;  
(2)判斷函數(shù)y=f(x)的奇偶性;
(3)已知y=f(x)在(0,+∞)上為增函數(shù)且f(4)=1,解不等式f(3x+1)+f(2x-6)≤3.
分析:(1)先令x1=x2=1,x1=x2=-1求得f(1)=0,f(-1)=0即可;
(2)由(1)得f(-x)=f(-1)+f(x)=f(x),即f(-x)=f(x),從而得到f(x)為偶函數(shù);
(3)根據(jù)題意,不等式f(3x+1)+f(2x-6)≤3可化為f[(3x+1)(2x-6)]≤f(64),然后-64≤(3x+1)(2x-6)≤64且(3x+1)(2x-6)≠0即可求出實數(shù)x的取值范圍.
解答:解:(1)分別令x1=x2=1,x1=x2=-1代入可得f(1)=0,f(-1)=0
∴f(1)+f(-1)=0
(2)∵f(-x)=f(-1)+f(x)=f(x),
∴f(x)為偶函數(shù)
(3)∵f(4)=1,
∴f(64)=3f(4)=3
故原不等式可化為f[(3x+1)(2x-6)]≤f(64)
∴-64≤(3x+1)(2x-6)≤64且(3x+1)(2x-6)≠0
解得:-
7
3
≤x≤5且 x≠-
1
3
 ,3
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、設(shè)函數(shù)y=f(x)存在反函數(shù)y=f-1(x),且函數(shù)y=x-f(x)的圖象過點(1,2),則函數(shù)y=f-1(x)-x的圖象一定過點
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R+上的函數(shù),并且滿足下面三個條件:①對任意正數(shù)x,y 都有f(xy)=f(x)+f(y);②當(dāng)x>1時,f(x)<0;③f(3)=-1.
(1)求f(1),f(
19
)的值;
(2)證明:f(x)在R+上是減函數(shù);
(3)如果不等式分f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)是y=f′(x),稱εyx=f′(x)•
x
y
為函數(shù)f(x)的彈性函數(shù).
函數(shù)f(x)=2e3x彈性函數(shù)為
3x
3x
;若函數(shù)f1(x)與f2(x)的彈性函數(shù)分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數(shù)為
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)

(用εf 1xεf 2x,f1(x)與f2(x)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=
f(x),f(x)≤k
k,f(x)>k
,取函數(shù)f(x)=2-x-e-x,若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),則K的最小值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù)fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函數(shù)f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則(  )

查看答案和解析>>

同步練習(xí)冊答案