【題目】用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過(guò)程歸納為以下三個(gè)步驟:
①A+B+C=90°+90°+C>180°,這與三角形內(nèi)角和為180°相矛盾,A=B=90°不成立;②所以一個(gè)三角形中不能有兩個(gè)直角;③假設(shè)三角形的三個(gè)內(nèi)角A , B , C中有兩個(gè)直角,不妨設(shè)A=B=90°,正確順序的序號(hào)為( )
A.①②③
B.①③②
C.②③①
D.③①②
【答案】D
【解析】根據(jù)反證法的步驟,應(yīng)該是先提出假設(shè),再推出矛盾,最后否定假設(shè),從而肯定結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解反證法與放縮法(常見(jiàn)不等式的放縮方法:①舍去或加上一些項(xiàng)②將分子或分母放大(縮小)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn若a2=1,a3=3,則S4=( )
A.12
B.10
C.8
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R.“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=asinx+bx3+1(a,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2016)+f(﹣2016)+f′(2017)﹣f′(﹣2017)=( )
A.2017
B.2016
C.2
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由“半徑為R的圓內(nèi)接矩形中,正方形的面積最大”,推理出“半徑為R的球的內(nèi)接長(zhǎng)方體中,正方體的體積最大”是
(A)類(lèi)比推理 (B)歸納推理 (C)演繹推理 (D)以上都不是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+3n若對(duì)任意n∈N*,f(x)≥0在[m,+∞)上恒成立,則實(shí)數(shù)m的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有6名選手參加演講比賽,觀(guān)眾甲猜測(cè):4號(hào)或5號(hào)選手得第一名;觀(guān)眾乙猜測(cè):3號(hào)選手不可能得第一名;觀(guān)眾丙猜測(cè):1,2,6號(hào)選手中的一位獲得第一名;觀(guān)眾丁猜測(cè):4,5,6號(hào)選手都不可能獲得第一名.比賽后發(fā)現(xiàn)沒(méi)有并列名次,且甲、乙、丙、丁中只有1人猜對(duì)比賽結(jié)果,此人是( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若f(x)=ax4+bx2+c滿(mǎn)足f′(1)=2,則f′(﹣1)=( )
A.﹣4
B.﹣2
C.2
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com