【題目】某水利部門擬在黃河沿岸修建一所水庫,為大致了解甲、乙兩地的降水情況,隨機選取汛期月份中的一周,將這一周內每日的降水量數據進行統(tǒng)計(單位:),制成如圖所示的莖葉圖.考慮以下結論:
①甲地本周的平均降水量低于乙地本周的平均降水量;
②甲地本周的中位降水量高于乙地本周的平均降水量;
③甲地本周的降水量眾數大于乙地本周的降水量的中位數;
④甲地本周降水量的標準差大于乙地本周降水量的標準差.
其中根據莖葉圖能得到的不恰當的統(tǒng)計結論的編號為( )
A.①③B.②④C.①④D.②③
科目:高中數學 來源: 題型:
【題目】已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經過點M(1,),過點P(2,1)的直線l與橢圓C相交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:極坐標與參數方程
在平面直角坐標系中,將曲線 (為參數) 上任意一點經過伸縮變換后得到曲線的圖形.以坐標原點為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(Ⅰ)求曲線和直線的普通方程;
(Ⅱ)點P為曲線上的任意一點,求點P到直線的距離的最大值及取得最大值時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年冬季青奧會即將在瑞士盛大開幕,為了在射擊比賽中取得優(yōu)異成績,某國擬從甲、乙兩位選手中派出一位隨代表團參賽,現兩人進行了5次射擊,射擊成績如下表(單位:分),則應派出選手及其標準差為( )
選手 次數 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 7.4 | 8.1 | 8.6 | 8.0 | 7.9 |
乙 | 7.8 | 8.4 | 7.6 | 8.1 | 8.1 |
A.甲,0.148B.乙,0.076C.甲,D.乙,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖,在平面直角坐標系中,橢圓的左、右焦點分別為, ,已知點和都在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)設, 是橢圓上位于軸上方的兩點,且直線與直線平行, 與交于點,
(i)若,求直線的斜率;
(ii)求證: 是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了解高一學生的視力健康狀況,在高一年級體檢活動中采用統(tǒng)一的標準對數視力表,按照《中國學生體質健康監(jiān)測工作手冊》的方法對1039名學生進行了視力檢測,判斷標準為:雙眼裸眼視力為視力正常, 為視力低下,其中為輕度, 為中度, 為重度.統(tǒng)計檢測結果后得到如圖所示的柱狀圖.
(1)求該校高一年級輕度近視患病率;
(2)根據保護視力的需要,需通知檢查結果為“重度近視”學生的家長帶孩子去醫(yī)院眼科進一步檢查和確診,并開展相應的矯治,則該校高一年級需通知的家長人數約為多少人?
(3)若某班級6名學生中有2人為視力正常,則從這6名學生中任選2人,恰有1人視力正常的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:①函數;
②向量,,且ω>0,;
③函數的圖象經過點
請在上述三個條件中任選一個,補充在下面問題中,并解答.
已知 ,且函數f(x)的圖象相鄰兩條對稱軸之間的距離為.
(1)若,且,求f(θ)的值;
(2)求函數f(x)在[0,2π]上的單調遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com