【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中的值;
(Ⅱ) 已知滿意度評分值在[90,100]內的男生數與女生數的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取2人進行座談,求所抽取的兩人中至少有一名女生的概率.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析:
(1)利用頻率分布直方圖小長方形的面積之和為 ,據此求解 的值即可;
(2)利用題意列出概率空間中的所有事件,然后利用古典概型的公式計算概率即可.
試題解析:
(Ⅰ)由,解得.
(Ⅱ)滿意度評分值在[90,100]內有人,
其中女生2人,男生4人.
設其中女生為,男生為,從中任取兩人,所有的基本事件為(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共15個,至少有1人年齡在[20,30)內的有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4)共9個.
所以,抽取的兩人中至少有一名女生的概率為,即為
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
在平面直角坐標系xOy中,曲線C1的參數方程為(t為參數).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2: .
(Ⅰ)求曲線C1和C2的直角坐標方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點?如果有,說明公共點的個數;如果沒有,請說明理由;
(Ⅲ)設是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,點是圓上的任意一點,,線段的垂直平分線與直線交于點.
(1)求點的軌跡方程;
(2)若直線與點的軌跡相切,且與圓相交于點和,求直線和三角形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中.
(Ⅰ) 當a=-1時,求證: ;
(Ⅱ) 對任意,存在,使成立,求a的取值范圍.(其中e是自然對數的底數,e=2.71828…)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常數a∈R.
(Ⅰ)討論g(x)的單調性;
(Ⅱ)當a>0時,若f(x)有兩個零點x1,x2(x1<x2),求證:在區(qū)間(1,+∞)上存在f(x)的極值點x0,使得x0lnx0+lnx0-2x0>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求出圓的直角坐標方程;
(2)已知圓與軸相交于, 兩點,直線: 關于點對稱的直線為.若直線上存在點使得,求實數的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com