已知x,y滿足
x+y-4≤0
x-y≥0
y≥0
,則z=x-2y的最大值是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進行求最值即可.
解答: 解:由z=x-2y得y=
1
2
x-
z
2
,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=
1
2
x-
z
2
,
由圖象可知當(dāng)直線y=
1
2
x-
z
2
,過點A(4,0)時,直線y=
1
2
x-
z
2
的截距最小大,此時z最大,
代入目標(biāo)函數(shù)z=x-2y,
得z=4
∴目標(biāo)函數(shù)z=x-2y的最大值是4.
故答案為:4;
點評:本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校研究性學(xué)習(xí)小組,為了分析2012年某小國的宏觀經(jīng)濟形勢,查閱了有關(guān)材料,得到2011年和2012年1-5月該國CPI同比(即當(dāng)年某月與前一年同月比)的增長數(shù)據(jù)(見下表),但2012年3,4,5三個月的數(shù)據(jù)(分別記為x,y,z)沒有查到,有的同學(xué)清楚記得2012年1-5月的CPI數(shù)據(jù)成等差數(shù)列.
(Ⅰ)求x,y,z的值;
(Ⅱ)求2012年1-5月該國CPI數(shù)據(jù)的方差;
(Ⅲ)一般認(rèn)為,某月CPI達到或超過3個百分點就已經(jīng)通貨膨脹,而達到或超過5個百分點則嚴(yán)重通貨膨脹.現(xiàn)隨機的從下表2011年的五個月和2012年的五個月的數(shù)據(jù)中各抽取一個數(shù)據(jù),求相同月份2011年通貨膨脹,并且2012年嚴(yán)重通貨膨脹的概率.附表:2011年和2012年1-5月CPI數(shù)據(jù)(單位:百分點 注:1個百分點=1%)
年份
月份
1 2 3 4 5
2011 2.7 2.4 2.8 3.1 2.9
2012 4.9 5.0 x y z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓E:(x+1)2+y2=16,點F(1,0),P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動點Q的軌跡Γ的方程;
(Ⅱ)點A(-2,0),B(2,0),點G是軌跡Γ上的一個動點,直線AG與直線x=2相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足a2=4,a3+a4=17.
(1)求{an}的通項公式;
(2)設(shè)bn=2an+2,證明數(shù)列{bn}是等比數(shù)列并求其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C1
x2
5
+y2=1的右焦點為F,P為橢圓上的一個動點.
(Ⅰ)求線段PF的中點M的軌跡C2的方程;
(Ⅱ)過點F的直線l與橢圓C1相交于點A、D,與曲線C2順次相交于點B、C,當(dāng)|AB|=|FC|-|FB|時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示程序框圖,則輸出的s的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,n),
b
=(-1,n),若2
a
-
b
b
垂直,則正數(shù)n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的程序框圖中,若輸出的n=6,則輸入的T的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+x,x≤1
log
1
3
x,x>1
,若對任意的x∈R,不等式f(x)≤m2-
3
4
m恒成立,則實數(shù)m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案