【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,121,3553等.顯然2位“回文數(shù)”共9個(gè):11,22,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y.
(1)求X為“回文數(shù)”的概率;
(2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望.
【答案】(1)
(2)隨機(jī)變量的概率分布為
0 | 1 | 2 | |
P |
隨機(jī)變量的數(shù)學(xué)期望為.
【解析】
(1)求出回文數(shù)的總數(shù),然后求解X為“回文數(shù)”的概率.
(2)隨機(jī)變量ξ的所有可能取值為0,1,2.由(1)得,設(shè)“Y是‘回文數(shù)’”為事件B,則事件A,B相互獨(dú)立.求出概率,得到分布列,然后求解期望即可.
(1)記“X是‘回文數(shù)’”為事件A.
9個(gè)不同2位“回文數(shù)”乘以4的值依次為:44,88,132,176,220,264,308,
352,396.其中“回文數(shù)”有:44,88.
所以,事件A的概率.
(2)根據(jù)條件知,隨機(jī)變量的所有可能取值為0,1,2.
由(1)得.
設(shè)“Y是‘回文數(shù)’”為事件B,則事件A,B相互獨(dú)立.
根據(jù)已知條件得,.
;
;
.
所以,隨機(jī)變量的概率分布為
0 | 1 | 2 | |
P |
所以,隨機(jī)變量的數(shù)學(xué)期望為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地某高中2018年的高考考生人數(shù)是2015年高考考生人數(shù)的1.5倍.為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015和2018年高考情況,得到如下餅圖:
2018年與2015年比較,下列結(jié)論正確的是( )
A. 一本達(dá)線人數(shù)減少
B. 二本達(dá)線人數(shù)增加了0.5倍
C. 藝體達(dá)線人數(shù)相同
D. 不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,若對于,,使得成立,則稱集合M是“互垂點(diǎn)集”.給出下列四個(gè)集合:;;;.其中是“互垂點(diǎn)集”集合的為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.
(1)求證:四棱錐為陽馬;
(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在六面體ABCD﹣A1B1C1D1中,AA1//CC1,A1B=A1D,AB=AD.求證:
(1)AA1⊥BD;
(2)BB1//DD1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1:的焦點(diǎn),且拋物線C1上點(diǎn)P處的切線與圓C2:相切于點(diǎn)Q.
(Ⅰ)當(dāng)直線PQ的方程為時(shí),求 拋物線C1的方程;
(Ⅱ)當(dāng)正數(shù)P變化時(shí),記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù),若,求的極值;
(2)設(shè)函數(shù),若的圖象與的圖象有,兩個(gè)不同的交點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求面與面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com