已知圓C:x2+y2-6x+8=0,則圓心C的坐標(biāo)為________;若直線y=kx與圓C相切,且切點(diǎn)在第四象限,則k=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時(shí)訓(xùn)練2練習(xí)卷(解析版) 題型:填空題
函數(shù)y=sin 2x+2 sin2 x的最小正周期T為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題6第1課時(shí)練習(xí)卷(解析版) 題型:解答題
有編號為1,2,3的三個(gè)白球,編號為4,5,6的三個(gè)黑球,這六個(gè)球除編號和顏色外完全相同,現(xiàn)從中任意取出兩個(gè)球.
(1)求取得的兩個(gè)球顏色相同的概率;
(2)求取得的兩個(gè)球顏色不相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第2課時(shí)練習(xí)卷(解析版) 題型:填空題
已知雙曲線C1:=1(a>0,b>0)與雙曲線C2:=1有相同的漸近線,且C1的右焦點(diǎn)為F(,0),則a=________,b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第1課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
點(diǎn)A(1,3)關(guān)于直線y=kx+b對稱的點(diǎn)是B(-2,1),則直線y=kx+b在x軸上的截距是( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第2課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).
求證:(1)平面EFG∥平面ABC;(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知直三棱柱ABC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為( )
A. B.2 C. D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第3課時(shí)練習(xí)卷(解析版) 題型:填空題
在OA為邊,OB為對角線的矩形中,=(-3,1),=(-2,k),則實(shí)數(shù)k=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com