已知A、B、C是直線(xiàn)l上不同的三個(gè)點(diǎn),點(diǎn)O不在直線(xiàn)l上,則使等式x2
OA
+x
OB
+
BC
=
0
成立的實(shí)數(shù)x的取值集合為(  )
A、{-1}B、∅
C、{0}D、{0,-1}
考點(diǎn):平面向量的基本定理及其意義
專(zhuān)題:平面向量及應(yīng)用
分析:利用向量的運(yùn)算法則將等式中的向量都用以o為起點(diǎn)的向量表示,利用三點(diǎn)共線(xiàn)的條件列出方程求出x.
解答: 解:x2
OA
+x
OB
+
BC
=
0

x2
OA
+x
OB
+
OC
-
OB
=
0

OC
=-x2
OA
+(1-x)
OB

∵A,B,C共線(xiàn),
∴-x2+1-x=1,
解得x=0,-1
當(dāng)x=0時(shí),x2
OA
+x
OB
+
BC
=
BC
=
0
,此時(shí)B,C兩點(diǎn)重合,不合題意
故選A.
點(diǎn)評(píng):本題考查向量的運(yùn)算法則、三點(diǎn)共線(xiàn)的充要條件:A,B,C共線(xiàn)?
OC
=x
OA
+y
OB
,其中x+y=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)m>0,對(duì)任意x∈R,有|f(x)|≤m|x|,則稱(chēng)f(x)為F函數(shù).給出下列函數(shù):①f(x)=0; ②f(x)=x2; ③f(x)=sinx+cosx;④f(x)=
x
x2+x+1
; ⑤f(x)是定義在R上的奇函數(shù),且滿(mǎn)足對(duì)一切實(shí)數(shù)x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函數(shù)的序號(hào)是( 。
A、①②④B、①②⑤
C、①③④D、①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線(xiàn)x2-y2=1的右焦點(diǎn)且與右支有兩個(gè)交點(diǎn)的直線(xiàn),其傾斜角范圍是( 。
A、[0,π)
B、(
π
4
,
4
C、(
π
4
π
2
)∪(
π
2
,
4
D、(0,
π
2
)∪(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將正方形ABCD沿對(duì)角線(xiàn)BD折起,使平面ABD⊥平面CBD,E是CD的中點(diǎn),則AE與平面ABD所成角的正弦值為( 。
A、
1
2
B、
6
3
C、
6
6
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)||z+i|-|z-i||=2對(duì)應(yīng)復(fù)平面內(nèi)的曲線(xiàn)是(  )
A、雙曲線(xiàn)B、雙曲線(xiàn)的一支
C、線(xiàn)段D、兩條射線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實(shí)數(shù)m的取值范圍為( 。
A、[0,+∞)
B、(0,+∞)
C、[-3,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x∈N|0<x≤8},集合A={1,2,4,5},B={3,5,7,8},則圖中陰影部分所表示的集合是( 。
A、{1,2,4}
B、{3,7,8}
C、{1,2,4,6}
D、{3,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的定義域和值域都是[-1,1](其圖象如圖所示),函數(shù)g(x)=sinx,x∈[-π,π].定義:當(dāng)f(x1)=0(x1∈[-1,1])且g(x2)=x1(x2∈[-π,π])時(shí),稱(chēng)x2是方程f(g(x))=0的一個(gè)實(shí)數(shù)根.則方程f(g(x))=0的所有不同實(shí)數(shù)根的個(gè)數(shù)是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=
S2
b2

(Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿(mǎn)足cn=
1
Sn
,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案