定義域為R的四個函數(shù)y=x2+1,y=3x,y=|x+1|,y=sinx中,偶函數(shù)的個數(shù)是( 。
A、4B、3C、2D、1
考點:函數(shù)奇偶性的判斷
專題:計算題,函數(shù)的性質(zhì)及應用
分析:根據(jù)偶函數(shù)的定義,驗證f(-x)=f(x),可得結(jié)論.
解答: 解:由題意,根據(jù)偶函數(shù)的定義,驗證f(-x)=f(x),可得y=x2+1是偶函數(shù),
故選:D.
點評:本題考查函數(shù)奇偶性的判斷,正確運用偶函數(shù)的定義是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知三點A(m,n),B(n,t),C(t,m),直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為
5
3
,而直線AB恰好經(jīng)過拋物線x2=2p(y-q),(p>0)的焦點F并且與拋物線交于P、Q兩點(P在y軸左側(cè)).則|
PF
QF
|=( 。
A、9
B、4
C、
173
2
D、
21
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=30,b=20,A=60°,則cosB=( 。
A、
6
3
B、
2
2
3
C、-
6
3
D、-
2
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個四面體的四個頂點在空間直角坐標系O-xyz中的坐標分別是(0,0,0),(1,2,0),(0,2,2),(3,0,1),則該四面體中以yOz平面為投影面的正視圖的面積為( 。
A、3
B、
5
2
C、2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x+y≥0
x-y≥1
x≤0
,則z=2x-y的最小值是( 。
A、1
B、0
C、-1
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=2,那么輸出的結(jié)果為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在公差不為零的等差數(shù)列{an}中,a1=8-a3,且a4為a2和a9的等比中項,求數(shù)列{an}的首項、公差及前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F是拋物線C:y2=2px(p>0)的焦點,若以點F為圓心半徑為1的圓與拋物線C有且僅有一個公共點.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若點A是拋物線C上任意一點(異于頂點),直線l與拋物線C相切于點A,l與x軸交于點M,B是點A在拋物線C的準線上的射影.證明:存在常數(shù)λ,使得
MF
+
MB
MA
恒成立.

查看答案和解析>>

同步練習冊答案