已知f(x)=x3+ax2+bx+c和g(x)=x2-3x+2,若y=f(x)在點(diǎn)x=-1處有極值,且曲線y=f(x)和y=g(x)在交點(diǎn)(0,2)處有公切線.
(Ⅰ)求a,b,c的值;
(Ⅱ)求f(x)在R上的極大值與極小值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(I)f′(x)=3x2+2ax+b,g′(x)=2x-3.由題意可得
f(-1)=0
f(0)=g(0)=-3
f(0)=2
,解得即可.
(II)由(I)可得f(x)=x3-3x+2,f′(x)=3(x+1)(x-1),令f′(x)=0,解得x=±1.列表即可得出函數(shù)的單調(diào)性極值.
解答: 解:(I)f′(x)=3x2+2ax+b,g′(x)=2x-3.
由題意可得
f(-1)=0
f(0)=g(0)=-3
f(0)=2
,
3-2a+b=0
b=-3
c=2
,解得a=0,b=-3,c=2.
∴a=0,b=-3,c=2.
(II)由(I)可得f(x)=x3-3x+2,f′(x)=3(x+1)(x-1),令f′(x)=0,解得x=±1.
列表如下:
x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)+0-0+
f(x)單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增
由表格可知:當(dāng)x=-1時(shí),函數(shù)f(x)取得極大值,f(-1)=4.當(dāng)x=1時(shí),函數(shù)f(x)取得極小值,f(1)=0.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、導(dǎo)數(shù)的幾何意義、切線,考查了推理能力和計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=logx(4-3x)的定義域是( 。
A、(-∞,
4
3
B、(0,
4
3
C、(0,1)∪(1,
4
3
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與過點(diǎn)M(-
3
,
2
),N(
2
,-
3
)的直線垂直,則直線l的傾斜角是(  )
A、60°B、120°
C、45°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d為奇函數(shù),且在x=-1處取得極大值2.
(Ⅰ)求f(x)解析式;
(Ⅱ)過點(diǎn)A(1,t)(t≠-2)可作函數(shù)f(x)象的三條切線,求實(shí)數(shù)t的取值范圍;
(Ⅲ)若f(x)+(m+2)x≤x2(ex-1)對(duì)于任意的x∈[0,+∞)恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-1-ax,g(x)=xf(x)
(Ⅰ)若a=
1
2
,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)x≥0時(shí)f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax+b在y軸上的截距為1,且曲線上一點(diǎn)P(
2
2
,y0)處的切線斜率為
1
3

(1)曲線在P點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(x3-ax)ln(x2+1-a)(a∈R)
(Ⅰ)若方程f(x)=0有3個(gè)不同的根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)數(shù)a,使得f(x)在(0,1)上恰有兩個(gè)極值點(diǎn)x1,x2,且滿足x2=2x1,若存在,求實(shí)數(shù)a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+alnx,其中a∈R,
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值,
(Ⅱ)在(1)的結(jié)論下,若關(guān)于x的不等式f(x+1)>
x2+(t+2)x+t+2
x2+3x+2
(t∈N*),當(dāng)x≥1時(shí)恒成立,求t的值;
(Ⅲ)令g(x)=x-f(x),若關(guān)于x的方程g(x)+g(3-x)=0在(0,1)內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3lnx+bx3+c在x=1處取得極值4+c.
(1)求a,b的值;
(2)若f(x)≤3c2對(duì)?x∈(0,+∞)恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案