如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E為PA的中點(diǎn),F為PC上不同于P、C的任意一點(diǎn).
(1)求證:PC∥面EBD
(2)求異面直線AC與PB間的距離
(3)求三棱錐E-BDF的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形PCBM是直角梯形,,,,.又,,,直線與直線所成的角為60°.
(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•陜西)如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.

(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設(shè)BD=1,求三棱錐D﹣ABC的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·貴陽模擬)一個(gè)幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點(diǎn)A,B,C在圓O的圓周上,其正(主)視圖,側(cè)(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求證:AC⊥BD.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E,F(xiàn)分別為棱AC,AD的中點(diǎn).

(1)求證:DC平面ABC;     
(2)設(shè),求三棱錐A-BFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的長方體中,底面是邊長為的正方形,的交點(diǎn),,是線段的中點(diǎn).
(1)求證:平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中, ,  的中點(diǎn),△是等腰三角形,的中點(diǎn),上一點(diǎn).

(1)若∥平面,求;
(2)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點(diǎn),點(diǎn)為邊邊的中點(diǎn),線段交線段于點(diǎn).將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,已知球O的面上四點(diǎn),DA⊥平面ABC。AB⊥BC,DA=AB=BC=,則球O的體積等于        。

查看答案和解析>>

同步練習(xí)冊(cè)答案