【題目】已知函數(shù).

(1)當時,求證:;

(2)討論函數(shù)零點的個數(shù).

【答案】(1)見證明;(2)見解析

【解析】

(1),對函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性,求函數(shù)最小值,證得函數(shù)的最小值大于0;(2)對函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性,得到函數(shù)的最值和極值,進而得到參數(shù)的范圍.

證明:時,.

時,;當時,,

所以上單調(diào)遞減,在單調(diào)遞增,

所以的極小值點,也是最小值點,

故當時,成立,

,由.

時,;當時,

所以上單調(diào)減,在單調(diào)增,

所以是函數(shù)得極小值點,也是最小值點,

,即時,沒有零點,

,即時,只有一個零點,

,即時,因為所以上只有一個零點;

,得,令,則得,所以,于是在上有一個零點;

因此,當時,有兩個零點.

綜上,時,沒有零點;

時,只有一個零點;

時,有兩個零點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場去年國慶期間累計生成萬張購物單,從中隨機抽出張,對每單消費金額進行統(tǒng)計得到下表:

消費金額(單位:元)

購物單張數(shù)

25

25

30

10

10

由于工作人員失誤,后兩欄數(shù)據(jù)已無法辨識,但當時記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計出的每單消費額的中位數(shù)與平均數(shù)恰好相等.用頻率估計概率,完成下列問題:

(1)估計去年國慶期間該商場累計生成的購物單中,單筆消費額超過元的概率;

(2)為鼓勵顧客消費,該商場打算在今年國慶期間進行促銷活動,凡單筆消費超過元者,可抽獎一次,中一等獎、二等獎、三等獎的顧客可以分別獲得價值元、元、元的獎品.已知中獎率為,且一等獎、二等獎、三等獎的中獎率依次構(gòu)成等比數(shù)列,其中一等獎的中獎率為.若今年國慶期間該商場的購物單數(shù)量比去年同期增長,式預(yù)測商場今年國慶期間采辦獎品的開銷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住一帶一路帶來的機遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)臺,需另投入成本(萬元), 當年產(chǎn)量不足臺時, (萬元); 當年產(chǎn)量不小于臺時 (萬元), 若每臺設(shè)備售價為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)能全部.

(1)求年利潤 (萬元)關(guān)年產(chǎn)(臺)的函數(shù)關(guān)系式;

(2)年產(chǎn)為多少臺時 ,該企業(yè)在這一電子設(shè)的生產(chǎn)中所獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱臺中,上底面邊長為4,下底面邊長為8,高為5,點分別在上,且.過點的平面與此四棱臺的下底面會相交,則平面與四棱臺的面的交線所圍成圖形的面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題A:、是方程的兩個實根,不等式對任意實數(shù)恒成立;命題B:不等式)有解.AB為真,求:m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由一組樣本數(shù)據(jù) ,,, 得到的回歸直線方程為,那么下面說法正確的序號________.

(1) 直線 必經(jīng)過點

(2)直線至少經(jīng)過點 , 中的一個

(3)直線 的斜率為 .

(4)回歸直線方程最能代表樣本數(shù)據(jù)中,之間的線性關(guān)系,b大于0時正相關(guān),b小于0時負相關(guān).

注:相關(guān)數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是等腰梯形,,是等邊三角形,點上.且.

(I)證明:平面;

(Ⅱ)若平面⊥平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學(xué)為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )

A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名

C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)曲線在點處的切線垂直于直線,求的值;

(2)討論函數(shù)零點的個數(shù).

查看答案和解析>>

同步練習冊答案