|
|
若實(shí)數(shù)k滿(mǎn)足0<k<9則曲線與曲線的
|
[ ] |
A. |
離心率相等
|
B. |
虛半軸長(zhǎng)相等
|
C. |
實(shí)半軸長(zhǎng)相等
|
D. |
焦距相等
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
設(shè)集合M={0,1,2},N={x|x2-3x+2≤0},則M∩N=
|
[ ] |
A. |
{1}
|
B. |
{2}
|
C. |
{0,1}
|
D. |
{1,2}
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
等比數(shù)列{an}的各項(xiàng)均為正數(shù)且a1a5=4,則log2a1+log2a2+log2a3+log2a4+log2a5=________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知橢圓的一個(gè)焦點(diǎn)為,離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0,y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓的兩條切線相互垂直,求點(diǎn)P的軌跡方程.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
不等式|x-1|+|x+2|≥5的解集為_(kāi)_______.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1,y1),P2(x2,y2)間的“L-距離”定義為||P1P2|=|x1-x2|=|y1-y2||則平面內(nèi)與x軸上兩個(gè)不同的定點(diǎn)F1,F(xiàn)2的“L-距離”之和等于定值(大于||F1F2|)的點(diǎn)的軌跡可以是
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
加工爆米花時(shí),爆開(kāi)且不糊的粒數(shù)的百分比稱(chēng)為“可食用率”.咋特定條件下,可食用率p與加工時(shí)間t(單位:分鐘)滿(mǎn)足的函數(shù)關(guān)系p=at2+bt+c(a、b、c是常數(shù)),下圖
記錄了三次實(shí)驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可以得到最佳加工時(shí)間為
|
[ ] |
A. |
3.50分鐘
|
B. |
3.75分鐘
|
C. |
4.00分鐘
|
D. |
4.25分鐘
|
|
|
查看答案和解析>>