【題目】已知集合

(1) 求實(shí)數(shù)的范圍

(2) 求實(shí)數(shù)的范圍;

(3) 求實(shí)數(shù)的范圍.

【答案】(1) (2) (3)不存在

【解析】試題分析:(1)分兩種情況考慮:當(dāng)集合不為空集時(shí),得到小于列出不等式,求出不等式的解集得到范圍的子集,列出關(guān)于的不等式,求出不等式的解集,找出范圍的交集得到的取值范圍當(dāng)集合空集時(shí),符合題意,得出大于,列出不等式,求出不等式的解集得到的范圍,綜上,得到所有滿足題意的范圍;(2)利用為常數(shù)},建立不等式,即可求得結(jié)論;(3)無解.

試題解析:(1)集合分兩種情況考慮

不為空集,可得解得, ,,解得,不成立.

為空集,符合題意,可得,解得,綜上,實(shí)數(shù)的范圍為.

(2) 為常數(shù)}, , ,.

(3)無解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

問題解決

如圖(1),將正方形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C、D重合),壓平后得到折痕MN.當(dāng)時(shí),求的值.

類比歸納

在圖(1)中,若的值等于 ;若的值等于 ;若n為整數(shù)),則的值等于 .(用含的式子表示)

聯(lián)系拓廣

如圖(2),將矩形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C、D重合),壓平后得到折痕MN設(shè),則的值等

.(用含的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如下表:

編號(hào)

成績(jī)

1

2

3

4

5

物理(

90

85

74

68

63

數(shù)學(xué)(

130

125

110

95

90

求數(shù)學(xué)成績(jī)關(guān)于物理成績(jī)的線性回歸方程精確到

若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為 ( )

(參考數(shù)據(jù):

A. 2.598,3,3.1048 B. 2.598,3,3.1056

C. 2.578,3,3.1069 D. 2.588,3,3.1108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是 的中點(diǎn).

(1)求證: 平面;

(2)求二面角的大。

(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)際奧委會(huì)將于2017年9月15日在秘魯利馬召開130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國(guó)漢堡、美國(guó)波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯(cuò)誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意>0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x2﹣4ax+a2﹣2a+2在區(qū)間[0,2]上有最小值3,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案