【題目】選修4-5:不等式選講

設(shè)函數(shù)f(x)=x2x-15,且|xa|<1,

(1)解不等式

(2)求證:|f(x)-f(a)|<2(|a|+1).

【答案】(1)(2)見(jiàn)解析

【解析】試題分析:(1)先根據(jù)絕對(duì)值定義將不等式轉(zhuǎn)化為兩個(gè)一元二次不等式,分別求解,最后求它們的并集(2)作差f(x)-f(a)因式分解得(xa)(xa-1),根據(jù)條件|xa|<1以及絕對(duì)值三角不等式放縮可得結(jié)論

試題解析(1)

(2)∵|xa|<1,

∴|f(x)-f(a)|=|(x2x-15)-(a2a-15)|

=|(xa)(xa-1)|

=|xa|·|xa-1|<1·|xa-1|

=|xa+2a-1|≤|xa|+|2a-1|<1+|2a-1|≤1+|2a|+1

=2(|a|+1),

即|f(x)-f(a)|<2(|a|+1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若曲線在點(diǎn)處的切線斜率為3,且時(shí), 有極值。

1)求函數(shù)的解析式;

2)求函數(shù)上的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量y(千輛/小時(shí))與汽車的平均速度v(千/小時(shí))之間有函數(shù)關(guān)系:
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度v為多少時(shí)車流量y最大?最大車流量為多少?(精確到0.01千輛);
(2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①△ABC中角A,B,C的對(duì)邊分別是a,b,c,若a>b,則cosA<cosB,cos2A<cos2B;
②a,b∈R,若a>b,則a3>b3
③若a<b,則
④設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 若S2016﹣S1=1,則S2017>1.
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明:1﹣ ≤ln(x+1)≤x,其中x>﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB,AC3 BC2,P是△ABC內(nèi)的一點(diǎn).

(1)若P是等腰直角三角形PBC的直角頂點(diǎn),求PA的長(zhǎng);

(2)若∠BPC,設(shè)∠PCBθ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}是單調(diào)遞增的數(shù)列,a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣3x+5,若關(guān)于x的方程f(x)=a至少有兩個(gè)不同實(shí)根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,分別是橢圓的左、右焦點(diǎn).

(1)若點(diǎn)是第一象限內(nèi)橢圓上的一點(diǎn), ,求點(diǎn)的坐標(biāo);

(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案