已知橢圓(a>b>0)拋物線(xiàn),從每條曲線(xiàn)上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
4 |
1 |
|||
2 |
4 |
2 |
(1)求的標(biāo)準(zhǔn)方程;(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線(xiàn)AC、BD過(guò)原點(diǎn)O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;
(2)當(dāng)k=0(此時(shí)滿(mǎn)足①式),即直線(xiàn)AB平行于x軸時(shí),的最小值為-2.
又直線(xiàn)AB的斜率不存在時(shí),所以的最大值為2.
(ii).
【解析】
試題分析:
利用待定系數(shù)法,將點(diǎn)(0,2),(,)代入橢圓方程,將(4,4),(1,2)代入拋物線(xiàn)方程,可得
(2)設(shè)直線(xiàn)AB的方程為,設(shè)
聯(lián)立,得
①
=
當(dāng)k=0(此時(shí)滿(mǎn)足①式),即直線(xiàn)AB平行于x軸時(shí),的最小值為-2.
又直線(xiàn)AB的斜率不存在時(shí),所以的最大值為2. 11分
(ii)設(shè)原點(diǎn)到直線(xiàn)AB的距離為d,則
. 13分
考點(diǎn):待定系數(shù)法,平面向量的坐標(biāo)運(yùn)算,橢圓、拋物線(xiàn)的標(biāo)準(zhǔn)方程,直線(xiàn)與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,曲線(xiàn)關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、拋物線(xiàn)的標(biāo)準(zhǔn)方程,主要運(yùn)用了待定系數(shù)法。作為研究圖形的面積,涉及弦長(zhǎng)公式的應(yīng)用,利用韋達(dá)定理,簡(jiǎn)化了計(jì)算過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
. 19(本小題滿(mǎn)分14分)
已知橢圓 (a>b>0)與直線(xiàn)
x+y-1 = 0相交于A、B兩點(diǎn),且OA⊥OB
(O為坐標(biāo)原點(diǎn)).
(I) 求 + 的值;
(II) 若橢圓長(zhǎng)軸長(zhǎng)的取值范圍是[,],
求橢圓離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓 (a>b>0),A、B是橢圓上的兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與x軸相交于點(diǎn)P(x0,0).證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高三5月高考模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓(a>b>0)拋物線(xiàn),從每條曲線(xiàn)上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
4 |
1 |
|||
2 |
4 |
2 |
(1)求的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線(xiàn)AC、BD過(guò)原點(diǎn)O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省綿陽(yáng)市高三第二次月考文科數(shù)學(xué)試卷 題型:解答題
已知橢圓(a>b>0)的左、右焦點(diǎn)分別為Fl vF2 ,離心率,A為右頂點(diǎn),K為右準(zhǔn)線(xiàn)與x軸的交點(diǎn),且.
(1) 求橢圓的標(biāo)準(zhǔn)方程
(2) 設(shè)橢圓的上頂點(diǎn)為B,問(wèn)是否存在直線(xiàn)l,使直線(xiàn)l交橢圓于C,D兩點(diǎn),且橢圓的左焦點(diǎn)F1恰為的垂心?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com