已知焦點(diǎn)在軸上的橢圓的離心率是,則的值為 (  )

A.           B.              C.            D.

 

【答案】

C

【解析】

試題分析:根據(jù)題意,由于焦點(diǎn)在軸上的橢圓的離心率是,故選C.

考點(diǎn):橢圓的離心率

點(diǎn)評:解決的關(guān)鍵是利用橢圓的性質(zhì)來得到a,c的比值關(guān)系,然后借助于其方程得到a的值,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年廈門外國語學(xué)校模擬)(12分)

已知焦點(diǎn)在軸上的橢圓是它的兩個(gè)焦點(diǎn).

(Ⅰ)若橢圓上存在一點(diǎn)P,使得試求的取值范圍;

(Ⅱ)若橢圓的離心率為,經(jīng)過右焦點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省安慶市高三模擬考試(三模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知焦點(diǎn)在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點(diǎn)的坐標(biāo)為,設(shè)直線(其中為整數(shù)).

(1)試求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西南昌八一、洪都、麻丘中學(xué)高二上期中數(shù)學(xué)試卷(解析版) 題型:選擇題

已知焦點(diǎn)在軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標(biāo)準(zhǔn)方程是(   )

A.    B.     C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題

(本題滿分15分)已知焦點(diǎn)在軸上的橢圓過點(diǎn),且離心率為,為橢圓的左頂點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知過點(diǎn)的直線與橢圓交于兩點(diǎn).

(。┤糁本垂直于軸,求的大小;

(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年黑龍江省高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:選擇題

1.         已知焦點(diǎn)在軸上的橢圓的兩個(gè)焦點(diǎn)分別為, 且,弦過焦點(diǎn),則的周長為

A.            B.               C.           D.

 

查看答案和解析>>

同步練習(xí)冊答案