【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,B={x∈Z|3<x<11},C={x∈R|x<a或x>a+1}.
(1)求A,(RA)∩B;
(2)若A∪C=R,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:∵ ,

解得5≤x<8,

∴A=[5,8)

B={4,5,6,7,8,9,10}

∴(RA)∩B={4,8,9,10}


(2)解:∵A∪C=R,

,

解得5≤a<7


【解析】(1)根據(jù)函數(shù)成立的條件即可求A,(RA)∩B;(2)根據(jù)A∪C=R,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】利用集合的并集運(yùn)算和交、并、補(bǔ)集的混合運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2017年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬(wàn)件)與年促銷費(fèi)用(單位:萬(wàn)元)()滿足 為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元.每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將2017年該產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)表示為年促銷費(fèi)用(單位:萬(wàn)元)的函數(shù);

(2)該廠家2017年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名同學(xué),對(duì)其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:

若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱為“讀書迷”.

(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的7名“讀書迷”中隨機(jī)抽取男、女“讀書迷”各1人,參加讀書日宣傳活動(dòng).

(i)共有多少種不同的抽取方法?

(ii)求抽取的男、女兩位“讀書迷”月均讀書時(shí)間相差不超過(guò)2小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)畫出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;

(2)若使用超過(guò)8年,維修費(fèi)用超過(guò)1.5萬(wàn)元時(shí),車主將處理掉該車,估計(jì)第10年年底時(shí),車主是否會(huì)處理掉該車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求證:過(guò)點(diǎn)有三條直線與曲線相切;

(Ⅱ)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡(jiǎn)圖,寫出函數(shù)f(x)的單調(diào)減區(qū)間及最值.
(3)若關(guān)于x的方程f(x)=m有兩個(gè)解,試說(shuō)出實(shí)數(shù)m的取值范圍.(只要寫出結(jié)果,不用給出證明過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬(wàn)元)

1

2

3

4

5

銷售收益 (單位:萬(wàn)元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三支股票, , ,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人數(shù)是持有股票的人數(shù)的2倍.在持有股票的人中,只持有股票的人數(shù)比除了持有股票外,同時(shí)還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有股票.則只持有股票的股民人數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案