已知函數(shù)f(x)=(
1
3
x-log2x,正實(shí)數(shù)a,b,c成公差為正數(shù)的等差數(shù)列,且滿足f(a)•f(b)•f(c)<0及f(a)+f(b)+f(c)<0,若實(shí)數(shù)x0是方程f(x)=0的一個(gè)解,則x0,a,b,c的大小關(guān)系是
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)=(
1
3
x-log2x為減函數(shù),由已知條件得0<a<b<c,實(shí)數(shù)x0是方程f(x)=0的一個(gè)解,由此能求出結(jié)果.
解答: 解:f(x)=(
1
3
x-log2x是由y=(
1
3
x和y=-log2x構(gòu)成的復(fù)合函數(shù),
∵兩個(gè)函數(shù)都是減函數(shù),
∴函數(shù)f(x)=(
1
3
x-log2x為減函數(shù).
∵正實(shí)數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,f(a)f(b)f(c)<0,f(a)+f(b)+f(c)<0,
∴f(a)<0,f(b)<0,f(c)<0,0<a<b<c,
∵實(shí)數(shù)x0是方程f(x)=0的一個(gè)解,
∴x0<a<b<c.
故答案為:x0<a<b<c
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)的應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)的單調(diào)性的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
1+x
1-x

(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)在[0,
1
2
]上的單調(diào)性并求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=logax在x∈(1,+∞)上恒有y<0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)F(x)=
x-1
x
(x≥1)
-x2+ax-3(x<1)
在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程sin(πx)=
1
3
x的解的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下五個(gè)結(jié)論:
①若“p且q”為假命題,則p、q均為假命題;
②若命題p:存在x∈R,使得x2+x+1<0,則?p:對(duì)任意x∈R,則x2+x+1≥0;
③“x=1”是“x2-3x+2=0”的充分不必要條件;
④存在實(shí)數(shù)x∈R,使sinx+cosx=
π
2
成立;
⑤對(duì)任意的x>0,都有x>lnx.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校高中三個(gè)年級(jí)的學(xué)生數(shù)分別為高一950人,高二1000人,高三1050人,現(xiàn)要調(diào)查該學(xué)校學(xué)生的視力情況,用分層抽樣方法,從中抽取容量為60的樣本,則從高一年級(jí)中應(yīng)抽取的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈R,用符號(hào)[x]表示不超過(guò)x的最大整數(shù).若函數(shù)f(x)=
[x]
x
-a(x≠0)有且僅有3個(gè)零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察如圖:則第          行的各數(shù)之和等于20092.(  )
A、1004B、1005
C、1006D、1007

查看答案和解析>>

同步練習(xí)冊(cè)答案